基于海底基准网络的系统误差建模增强水声导航

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Marine Geodesy Pub Date : 2022-12-22 DOI:10.1080/01490419.2022.2162646
Junting Wang, Tianhe Xu, Yangfan Liu, Mowen Li, Long Li
{"title":"基于海底基准网络的系统误差建模增强水声导航","authors":"Junting Wang, Tianhe Xu, Yangfan Liu, Mowen Li, Long Li","doi":"10.1080/01490419.2022.2162646","DOIUrl":null,"url":null,"abstract":"Abstract Underwater acoustic navigation technology is an important approach to achieving high precision ocean navigation. One of the critical issues of the technology is to correct systematic errors, which are related to time delays and time-varying sound speed errors. In this study, we propose an augmented underwater acoustic navigation with systematic error model based on seafloor datum network. The proposed algorithm first selects data sets of piece-wise systematic error modeling by extracting the main periodic term of systematic errors based on the Fourier transform. Before that, the wavelet transform is used for denoising to better extract the main periodic term. Then the systematic error correction model is constructed by using the polynomial fitting method. After that, an augmented observation equation of underwater acoustic navigation with systematic error correction is constructed. Finally, an adaptive robust Kalman filter is developed for underwater acoustic navigation. The proposed algorithm is verified by an experiment in the South China Sea. The three-dimensional root mean square values of underwater acoustic navigation are 1.010 and 1.502 m in the operating range of 2.7 and 8.7 km. The results demonstrate that the proposed algorithm can efficiently reduce the influence of systematic error, thus improving underwater acoustic navigation accuracy.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Augmented Underwater Acoustic Navigation with Systematic Error Modeling Based on Seafloor Datum Network\",\"authors\":\"Junting Wang, Tianhe Xu, Yangfan Liu, Mowen Li, Long Li\",\"doi\":\"10.1080/01490419.2022.2162646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Underwater acoustic navigation technology is an important approach to achieving high precision ocean navigation. One of the critical issues of the technology is to correct systematic errors, which are related to time delays and time-varying sound speed errors. In this study, we propose an augmented underwater acoustic navigation with systematic error model based on seafloor datum network. The proposed algorithm first selects data sets of piece-wise systematic error modeling by extracting the main periodic term of systematic errors based on the Fourier transform. Before that, the wavelet transform is used for denoising to better extract the main periodic term. Then the systematic error correction model is constructed by using the polynomial fitting method. After that, an augmented observation equation of underwater acoustic navigation with systematic error correction is constructed. Finally, an adaptive robust Kalman filter is developed for underwater acoustic navigation. The proposed algorithm is verified by an experiment in the South China Sea. The three-dimensional root mean square values of underwater acoustic navigation are 1.010 and 1.502 m in the operating range of 2.7 and 8.7 km. The results demonstrate that the proposed algorithm can efficiently reduce the influence of systematic error, thus improving underwater acoustic navigation accuracy.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2022.2162646\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2162646","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要水声导航技术是实现高精度海洋导航的重要途径。该技术的关键问题之一是校正与时间延迟和时变声速误差有关的系统误差。在这项研究中,我们提出了一种基于海底基准网络的具有系统误差模型的增强型水声导航。该算法首先基于傅立叶变换提取系统误差的主周期项,选择分段系统误差建模的数据集。在此之前,使用小波变换进行去噪,以更好地提取主周期项。然后利用多项式拟合方法建立了系统误差校正模型。在此基础上,构造了具有系统误差校正的水声导航增广观测方程。最后,提出了一种适用于水声导航的自适应鲁棒卡尔曼滤波器。通过在南海的实验验证了该算法的有效性。水声导航的三维均方根值分别为1.010和1.502 m,在2.7和8.7的工作范围内 结果表明,该算法可以有效地减少系统误差的影响,从而提高水声导航的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Augmented Underwater Acoustic Navigation with Systematic Error Modeling Based on Seafloor Datum Network
Abstract Underwater acoustic navigation technology is an important approach to achieving high precision ocean navigation. One of the critical issues of the technology is to correct systematic errors, which are related to time delays and time-varying sound speed errors. In this study, we propose an augmented underwater acoustic navigation with systematic error model based on seafloor datum network. The proposed algorithm first selects data sets of piece-wise systematic error modeling by extracting the main periodic term of systematic errors based on the Fourier transform. Before that, the wavelet transform is used for denoising to better extract the main periodic term. Then the systematic error correction model is constructed by using the polynomial fitting method. After that, an augmented observation equation of underwater acoustic navigation with systematic error correction is constructed. Finally, an adaptive robust Kalman filter is developed for underwater acoustic navigation. The proposed algorithm is verified by an experiment in the South China Sea. The three-dimensional root mean square values of underwater acoustic navigation are 1.010 and 1.502 m in the operating range of 2.7 and 8.7 km. The results demonstrate that the proposed algorithm can efficiently reduce the influence of systematic error, thus improving underwater acoustic navigation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
期刊最新文献
Antarctic ice surface properties inferred from Ka and Ku band altimeter waveforms Seafloor Topography Recovery Using the Observation Data of Tiangong-2 Interferometric Imaging Radar Altimeter Adversarial enhancement generation method for side-scan sonar images based on DDPM–YOLO Utilizing Elephant Herd-Inspired Spiking Neural Networks for Enhanced Ship Detection and Classification in Marine Scene Matching Special issue of Marine Geodesy on Remote Sensing of Islands, Reefs, and Coastal Zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1