{"title":"热休克蛋白90:癌症适应的推动者","authors":"Alex M. Jaeger, L. Whitesell","doi":"10.1146/ANNUREV-CANCERBIO-030518-055533","DOIUrl":null,"url":null,"abstract":"The stability and function of many oncogenic mutant proteins depend on heat shock protein 90 (HSP90). This unique activity has inspired the exploration of HSP90 as an anticancer target for over two decades. Unfortunately, while clinical trials of highly optimized HSP90 inhibitors have demonstrated modest benefit for patients with advanced cancers, most commonly stabilization of disease, no HSP90 inhibitor has demonstrated sufficient efficacy to achieve FDA approval to date. This review discusses potential reasons for the limited success of these agents and how our increasingly sophisticated understanding of HSP90 suggests alternative, potentially more effective strategies for targeting it to treat cancers. First, we focus on insights gained from model organisms that suggest a fundamental role for HSP90 in supporting the adaptability and heterogeneity of cancers, key factors underlying their ability to evolve and acquire drug resistance. Second, we examine how HSP90’s role in promoting the stability of mutant proteins might be targeted in genetically unstable tumor cells to reveal their aberrant, foreign proteome to the immune system. Both of these emerging aspects of HSP90 biology suggest that the most effective use of HSP90 inhibitors may not be at high doses with the intent to kill cancer cells, but rather in combination with other molecularly targeted therapies at modest, non-heat shock-inducing exposures that limit the adaptive capacity of cancers.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-CANCERBIO-030518-055533","citationCount":"50","resultStr":"{\"title\":\"HSP90: Enabler of Cancer Adaptation\",\"authors\":\"Alex M. Jaeger, L. Whitesell\",\"doi\":\"10.1146/ANNUREV-CANCERBIO-030518-055533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability and function of many oncogenic mutant proteins depend on heat shock protein 90 (HSP90). This unique activity has inspired the exploration of HSP90 as an anticancer target for over two decades. Unfortunately, while clinical trials of highly optimized HSP90 inhibitors have demonstrated modest benefit for patients with advanced cancers, most commonly stabilization of disease, no HSP90 inhibitor has demonstrated sufficient efficacy to achieve FDA approval to date. This review discusses potential reasons for the limited success of these agents and how our increasingly sophisticated understanding of HSP90 suggests alternative, potentially more effective strategies for targeting it to treat cancers. First, we focus on insights gained from model organisms that suggest a fundamental role for HSP90 in supporting the adaptability and heterogeneity of cancers, key factors underlying their ability to evolve and acquire drug resistance. Second, we examine how HSP90’s role in promoting the stability of mutant proteins might be targeted in genetically unstable tumor cells to reveal their aberrant, foreign proteome to the immune system. Both of these emerging aspects of HSP90 biology suggest that the most effective use of HSP90 inhibitors may not be at high doses with the intent to kill cancer cells, but rather in combination with other molecularly targeted therapies at modest, non-heat shock-inducing exposures that limit the adaptive capacity of cancers.\",\"PeriodicalId\":54233,\"journal\":{\"name\":\"Annual Review of Cancer Biology-Series\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-CANCERBIO-030518-055533\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Cancer Biology-Series\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-CANCERBIO-030518-055533\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology-Series","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/ANNUREV-CANCERBIO-030518-055533","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The stability and function of many oncogenic mutant proteins depend on heat shock protein 90 (HSP90). This unique activity has inspired the exploration of HSP90 as an anticancer target for over two decades. Unfortunately, while clinical trials of highly optimized HSP90 inhibitors have demonstrated modest benefit for patients with advanced cancers, most commonly stabilization of disease, no HSP90 inhibitor has demonstrated sufficient efficacy to achieve FDA approval to date. This review discusses potential reasons for the limited success of these agents and how our increasingly sophisticated understanding of HSP90 suggests alternative, potentially more effective strategies for targeting it to treat cancers. First, we focus on insights gained from model organisms that suggest a fundamental role for HSP90 in supporting the adaptability and heterogeneity of cancers, key factors underlying their ability to evolve and acquire drug resistance. Second, we examine how HSP90’s role in promoting the stability of mutant proteins might be targeted in genetically unstable tumor cells to reveal their aberrant, foreign proteome to the immune system. Both of these emerging aspects of HSP90 biology suggest that the most effective use of HSP90 inhibitors may not be at high doses with the intent to kill cancer cells, but rather in combination with other molecularly targeted therapies at modest, non-heat shock-inducing exposures that limit the adaptive capacity of cancers.
期刊介绍:
The Annual Review of Cancer Biology offers comprehensive reviews on various topics within cancer research, covering pivotal and emerging areas in the field. As our understanding of cancer's fundamental mechanisms deepens and more findings transition into targeted clinical treatments, the journal is structured around three main themes: Cancer Cell Biology, Tumorigenesis and Cancer Progression, and Translational Cancer Science. The current volume of this journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, ensuring all articles are published under a CC BY license.