Y. Ivanov, V. Shugurov, E. Petrikova, N. Prokopenko, A. Teresov, O. Tolkachev
{"title":"多层纳米结构高熵合金的电子-离子-等离子体渗硼","authors":"Y. Ivanov, V. Shugurov, E. Petrikova, N. Prokopenko, A. Teresov, O. Tolkachev","doi":"10.22226/2410-3535-2022-4-433-438","DOIUrl":null,"url":null,"abstract":"The structure and properties of a high-entropy alloy (HEA) subjected to saturation with boron atoms by a combined electron-ion-plasma method are characterized. On a HEA film of 5 μm thickness deposited on AISI 304 steel, a film (boron + chromium) with a thickness of 1 μm was deposited and then the system “(Cr + B) film / (HEA film deposited on AISI 304 steel) substrate” was irradiated with a pulsed electron beam. It is shown that the wear resistance of the resulting alloy is more than 30 times higher than that of the original HEA film. The microhardness of the alloy is 10.5 % higher than that of HEA in the initial state. It has been revealed that irradiation of the system with a pulsed electron beam leads to the formation of a multi-element surface alloy of composition (at.%) 5.8Al-11.6Ti-12.9Cr-13.0Fe-2.4Ni-13.1Cu-10.4Zr-8.8Nb, the rest (22 at.%) is oxygen and boron. Thus, seven-element HEA of non-stoichiometric composition, the concentration of metal elements of which varies within (5.8 –13.0) at.%, and additionally containing atoms of nickel, oxygen and boron was formed. It has been established that the high tribological and strength properties of the surface alloy are due to the formation of a multiphase submicron-nanocrystalline structure of high-speed cellular crystallization in the modified layer 6 µm thick. High-speed crystallization is accompanied by alloy delamination with the formation of extended interlayers enriched with copper atoms located along the boundaries of crystallization cells.","PeriodicalId":45792,"journal":{"name":"Letters on Materials","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electron-ion-plasma boriding of a multilayer nanostructural high-entropy alloy\",\"authors\":\"Y. Ivanov, V. Shugurov, E. Petrikova, N. Prokopenko, A. Teresov, O. Tolkachev\",\"doi\":\"10.22226/2410-3535-2022-4-433-438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure and properties of a high-entropy alloy (HEA) subjected to saturation with boron atoms by a combined electron-ion-plasma method are characterized. On a HEA film of 5 μm thickness deposited on AISI 304 steel, a film (boron + chromium) with a thickness of 1 μm was deposited and then the system “(Cr + B) film / (HEA film deposited on AISI 304 steel) substrate” was irradiated with a pulsed electron beam. It is shown that the wear resistance of the resulting alloy is more than 30 times higher than that of the original HEA film. The microhardness of the alloy is 10.5 % higher than that of HEA in the initial state. It has been revealed that irradiation of the system with a pulsed electron beam leads to the formation of a multi-element surface alloy of composition (at.%) 5.8Al-11.6Ti-12.9Cr-13.0Fe-2.4Ni-13.1Cu-10.4Zr-8.8Nb, the rest (22 at.%) is oxygen and boron. Thus, seven-element HEA of non-stoichiometric composition, the concentration of metal elements of which varies within (5.8 –13.0) at.%, and additionally containing atoms of nickel, oxygen and boron was formed. It has been established that the high tribological and strength properties of the surface alloy are due to the formation of a multiphase submicron-nanocrystalline structure of high-speed cellular crystallization in the modified layer 6 µm thick. High-speed crystallization is accompanied by alloy delamination with the formation of extended interlayers enriched with copper atoms located along the boundaries of crystallization cells.\",\"PeriodicalId\":45792,\"journal\":{\"name\":\"Letters on Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters on Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22226/2410-3535-2022-4-433-438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters on Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22226/2410-3535-2022-4-433-438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electron-ion-plasma boriding of a multilayer nanostructural high-entropy alloy
The structure and properties of a high-entropy alloy (HEA) subjected to saturation with boron atoms by a combined electron-ion-plasma method are characterized. On a HEA film of 5 μm thickness deposited on AISI 304 steel, a film (boron + chromium) with a thickness of 1 μm was deposited and then the system “(Cr + B) film / (HEA film deposited on AISI 304 steel) substrate” was irradiated with a pulsed electron beam. It is shown that the wear resistance of the resulting alloy is more than 30 times higher than that of the original HEA film. The microhardness of the alloy is 10.5 % higher than that of HEA in the initial state. It has been revealed that irradiation of the system with a pulsed electron beam leads to the formation of a multi-element surface alloy of composition (at.%) 5.8Al-11.6Ti-12.9Cr-13.0Fe-2.4Ni-13.1Cu-10.4Zr-8.8Nb, the rest (22 at.%) is oxygen and boron. Thus, seven-element HEA of non-stoichiometric composition, the concentration of metal elements of which varies within (5.8 –13.0) at.%, and additionally containing atoms of nickel, oxygen and boron was formed. It has been established that the high tribological and strength properties of the surface alloy are due to the formation of a multiphase submicron-nanocrystalline structure of high-speed cellular crystallization in the modified layer 6 µm thick. High-speed crystallization is accompanied by alloy delamination with the formation of extended interlayers enriched with copper atoms located along the boundaries of crystallization cells.
期刊介绍:
The aim of "Letters on materials" is to provide a fast publication of short research and review articles on various topics in materials science and related areas of material physics and mechanics. The editorial board sees it''s own task in rapid informing of the readers on the state-of-the-art challenges and achievements in materials science. The editorial board does its best to select high quality papers reporting new scientific results that are of interest for researchers in materials science, physics, and mechanics. "Letters on materials" invites Russian and foreign researches to publish papers in both the Russian and English languages. The scope of the journal covers the following research areas: structure analysis of materials, mechanical and physical properties of materials, production and processing of materials, experimental methods of investigation of materials, theory and computational methods in solid state physics. "Letters on materials" is designed for researchers, engineers, lecturers, and students working in the areas of materials science, mechanical engineering, metal forming, physics, and material mechanics.