{"title":"花关联对液甲虫视觉系统投资的预测(鞘翅目:液甲虫科)","authors":"Gareth S. Powell, Seth M. Bybee","doi":"10.1111/syen.12558","DOIUrl":null,"url":null,"abstract":"<p>Patterns in morphological variation are a central theme of evolution. Uncovering links between morphological character evolution and natural history, specifically feeding behaviour, is important to understanding biological diversity. Species within the sap beetles (Nitidulidae) exhibit a tremendous diversity of feeding behaviours. This immense diversity of feeding can be seen both between major lineages and very closely related taxa. Feeding behaviour diversity may drive morphological variation in several character systems (e.g., eyes). For example, in a shift from feeding on rotting fruit to flower-visiting (anthophily), selective pressures on the visual system may vary and ultimately lead to differences in eye morphology. We tested for potential morphological shifts in relative eye size among adult beetles. We specifically tested for significant relationships between relative eye size and the following factors flower-visiting and sex. We also tested for the influence of phylogeny on the evolution of relative eye size, implementing tests of trait correlation across a topology. We found greater relative eye size in taxa exhibiting anthophilous behaviour, regardless of phylogenetic relatedness or feeding behaviour of sister taxa. We were unable to recover a relationship between relative eye size and sex. Thus, feeding behaviour is currently the strongest predictor of eye size in sap beetles.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investment in visual system predicted by floral associations in sap beetles (Coleoptera: Nitidulidae)\",\"authors\":\"Gareth S. Powell, Seth M. Bybee\",\"doi\":\"10.1111/syen.12558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Patterns in morphological variation are a central theme of evolution. Uncovering links between morphological character evolution and natural history, specifically feeding behaviour, is important to understanding biological diversity. Species within the sap beetles (Nitidulidae) exhibit a tremendous diversity of feeding behaviours. This immense diversity of feeding can be seen both between major lineages and very closely related taxa. Feeding behaviour diversity may drive morphological variation in several character systems (e.g., eyes). For example, in a shift from feeding on rotting fruit to flower-visiting (anthophily), selective pressures on the visual system may vary and ultimately lead to differences in eye morphology. We tested for potential morphological shifts in relative eye size among adult beetles. We specifically tested for significant relationships between relative eye size and the following factors flower-visiting and sex. We also tested for the influence of phylogeny on the evolution of relative eye size, implementing tests of trait correlation across a topology. We found greater relative eye size in taxa exhibiting anthophilous behaviour, regardless of phylogenetic relatedness or feeding behaviour of sister taxa. We were unable to recover a relationship between relative eye size and sex. Thus, feeding behaviour is currently the strongest predictor of eye size in sap beetles.</p>\",\"PeriodicalId\":22126,\"journal\":{\"name\":\"Systematic Entomology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/syen.12558\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12558","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Investment in visual system predicted by floral associations in sap beetles (Coleoptera: Nitidulidae)
Patterns in morphological variation are a central theme of evolution. Uncovering links between morphological character evolution and natural history, specifically feeding behaviour, is important to understanding biological diversity. Species within the sap beetles (Nitidulidae) exhibit a tremendous diversity of feeding behaviours. This immense diversity of feeding can be seen both between major lineages and very closely related taxa. Feeding behaviour diversity may drive morphological variation in several character systems (e.g., eyes). For example, in a shift from feeding on rotting fruit to flower-visiting (anthophily), selective pressures on the visual system may vary and ultimately lead to differences in eye morphology. We tested for potential morphological shifts in relative eye size among adult beetles. We specifically tested for significant relationships between relative eye size and the following factors flower-visiting and sex. We also tested for the influence of phylogeny on the evolution of relative eye size, implementing tests of trait correlation across a topology. We found greater relative eye size in taxa exhibiting anthophilous behaviour, regardless of phylogenetic relatedness or feeding behaviour of sister taxa. We were unable to recover a relationship between relative eye size and sex. Thus, feeding behaviour is currently the strongest predictor of eye size in sap beetles.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.