木质纤维素生物质:油棕空果串和红木木屑活性炭的合成与表征

Ria Yolanda Arundina, Indri Permana, Ester Rimma Suryani Togatorop, I. Ismadi, S. S. Kusumah, I. Budiman, Subyakto Subyakto, R. Marlina
{"title":"木质纤维素生物质:油棕空果串和红木木屑活性炭的合成与表征","authors":"Ria Yolanda Arundina, Indri Permana, Ester Rimma Suryani Togatorop, I. Ismadi, S. S. Kusumah, I. Budiman, Subyakto Subyakto, R. Marlina","doi":"10.15294/jbat.v10i2.33488","DOIUrl":null,"url":null,"abstract":"Lignocellulosic biomass is a biological residue from the agricultural or forestry industry which is composed of polymeric cellulose, hemicellulose, lignin, and other extractive components. One of the products in the utilization of lignocellulosic biomass waste is activated carbon products. In this study, two types of lignocellulosic biomass waste were used, namely Empty Palm Oil Bunches (OPEFB) and Mahogany Sawdust (MS) to be converted into activated carbon using the hydrothermal-pyrolysis method. Potassium hydroxide (KOH) was used as an activating agent at high concentrations (50% w/w) to improve the adsorption mechanism in activated carbon material. Proximate analysis was carried out to obtain information related to yield, moisture content, and ash content. In addition, activated carbon samples were characterized using FTIR, XRD, and FESEM to observe the chemical bonds, structure, and morphology of activated carbon, respectively. The proximate analysis showed that the activated carbon sample had met the SNI 63-3730-1995 standard for technical activated carbon on the parameters of water content and ash content, while the FTIR spectrum showed the mechanism of biomass conversion from raw materials to activated carbon on a chemical bond approach. Furthermore, the XRD graph shows a reduction in the crystal size of the material from raw material to activated carbon material. Finally, the FESEM image shows a significant increase in the quality and quantity of pores on the carbon material before and after activation.","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and Characterization of Activated Carbon from Lignocellulosic Biomass: Oil Palm Empty Fruit Bunches and Mahogany Sawdust\",\"authors\":\"Ria Yolanda Arundina, Indri Permana, Ester Rimma Suryani Togatorop, I. Ismadi, S. S. Kusumah, I. Budiman, Subyakto Subyakto, R. Marlina\",\"doi\":\"10.15294/jbat.v10i2.33488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lignocellulosic biomass is a biological residue from the agricultural or forestry industry which is composed of polymeric cellulose, hemicellulose, lignin, and other extractive components. One of the products in the utilization of lignocellulosic biomass waste is activated carbon products. In this study, two types of lignocellulosic biomass waste were used, namely Empty Palm Oil Bunches (OPEFB) and Mahogany Sawdust (MS) to be converted into activated carbon using the hydrothermal-pyrolysis method. Potassium hydroxide (KOH) was used as an activating agent at high concentrations (50% w/w) to improve the adsorption mechanism in activated carbon material. Proximate analysis was carried out to obtain information related to yield, moisture content, and ash content. In addition, activated carbon samples were characterized using FTIR, XRD, and FESEM to observe the chemical bonds, structure, and morphology of activated carbon, respectively. The proximate analysis showed that the activated carbon sample had met the SNI 63-3730-1995 standard for technical activated carbon on the parameters of water content and ash content, while the FTIR spectrum showed the mechanism of biomass conversion from raw materials to activated carbon on a chemical bond approach. Furthermore, the XRD graph shows a reduction in the crystal size of the material from raw material to activated carbon material. Finally, the FESEM image shows a significant increase in the quality and quantity of pores on the carbon material before and after activation.\",\"PeriodicalId\":17764,\"journal\":{\"name\":\"Jurnal Bahan Alam Terbarukan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Bahan Alam Terbarukan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/jbat.v10i2.33488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/jbat.v10i2.33488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

木质纤维素生物质是农业或林业工业的生物残渣,由聚合纤维素、半纤维素、木质素和其他萃取成分组成。木质纤维素生物质废弃物利用的产品之一是活性炭产品。本研究利用空棕榈油束(OPEFB)和桃花心木屑(MS)两种木质纤维素生物质废弃物,采用水热热解法将其转化为活性炭。以高浓度氢氧化钾(KOH)为活化剂(50% w/w)改善活性炭材料的吸附机理。进行了近似分析,以获得与产量、水分含量和灰分含量有关的信息。此外,通过FTIR、XRD和FESEM对活性炭样品进行了表征,分别观察了活性炭的化学键、结构和形貌。近似分析表明,活性炭样品在含水量、灰分等参数上符合SNI 63-3730-1995技术活性炭标准,FTIR光谱显示生物质从原料到活性炭的化学键转化机理。此外,XRD图显示,从原料到活性炭材料,材料的晶粒尺寸减小。最后,FESEM图像显示,活化前后碳材料上的孔隙质量和数量显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of Activated Carbon from Lignocellulosic Biomass: Oil Palm Empty Fruit Bunches and Mahogany Sawdust
Lignocellulosic biomass is a biological residue from the agricultural or forestry industry which is composed of polymeric cellulose, hemicellulose, lignin, and other extractive components. One of the products in the utilization of lignocellulosic biomass waste is activated carbon products. In this study, two types of lignocellulosic biomass waste were used, namely Empty Palm Oil Bunches (OPEFB) and Mahogany Sawdust (MS) to be converted into activated carbon using the hydrothermal-pyrolysis method. Potassium hydroxide (KOH) was used as an activating agent at high concentrations (50% w/w) to improve the adsorption mechanism in activated carbon material. Proximate analysis was carried out to obtain information related to yield, moisture content, and ash content. In addition, activated carbon samples were characterized using FTIR, XRD, and FESEM to observe the chemical bonds, structure, and morphology of activated carbon, respectively. The proximate analysis showed that the activated carbon sample had met the SNI 63-3730-1995 standard for technical activated carbon on the parameters of water content and ash content, while the FTIR spectrum showed the mechanism of biomass conversion from raw materials to activated carbon on a chemical bond approach. Furthermore, the XRD graph shows a reduction in the crystal size of the material from raw material to activated carbon material. Finally, the FESEM image shows a significant increase in the quality and quantity of pores on the carbon material before and after activation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Optimization of Rhizopus Sp. Growth Media for Biofoam Manufacture: Effect of Temperature and Substrate Composition Optimization of Operating Condition for the Production of Edible Film from Cuttlefish’s Bone Gelatin as Instant Noodle Seasoning Packaging Preparation of Composite Reinforced Agent Based on Sweet Sorghum Stalk Fiber through Alkali Pressure Steam Treated Method The Properties of Particleboard Composites Made from Pleurotus ostreatus Baglog Waste Using Citric Acid and Sucrose Adhesive Optimization of Glycerolysis of Free Fatty Acids from Cocoa Bean with MgO Catalyst Using Response Surface Methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1