一种改进的基于ConvNeXt网络的新冠肺炎肺部X射线图像分类算法

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-05-22 DOI:10.1142/s0219467824500360
Fuxiang Liu, Chen Zang, Junqi Shi, Weiyu He, Yubo Liang, Lei Li
{"title":"一种改进的基于ConvNeXt网络的新冠肺炎肺部X射线图像分类算法","authors":"Fuxiang Liu, Chen Zang, Junqi Shi, Weiyu He, Yubo Liang, Lei Li","doi":"10.1142/s0219467824500360","DOIUrl":null,"url":null,"abstract":"Aiming at the new coronavirus that appeared in 2019, which has caused a large number of infected patients worldwide due to its high contagiousness, in order to detect the source of infection in time and cut off the chain of transmission, we developed a new Chest X-ray (CXR) image classification algorithm with high accuracy, simple operation and fast processing for COVID-19. The algorithm is based on ConvNeXt pure convolutional neural network, we adjusted the network structure and loss function, added some new Data Augmentation methods and introduced attention mechanism. Compared with other classical convolutional neural network classification algorithms such as AlexNet, ResNet-34, ResNet-50, ResNet-101, ConvNeXt-tiny, ConvNeXt-small and ConvNeXt-base, the improved algorithm has better performance on COVID dataset.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved COVID-19 Lung X-Ray Image Classification Algorithm Based on ConvNeXt Network\",\"authors\":\"Fuxiang Liu, Chen Zang, Junqi Shi, Weiyu He, Yubo Liang, Lei Li\",\"doi\":\"10.1142/s0219467824500360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the new coronavirus that appeared in 2019, which has caused a large number of infected patients worldwide due to its high contagiousness, in order to detect the source of infection in time and cut off the chain of transmission, we developed a new Chest X-ray (CXR) image classification algorithm with high accuracy, simple operation and fast processing for COVID-19. The algorithm is based on ConvNeXt pure convolutional neural network, we adjusted the network structure and loss function, added some new Data Augmentation methods and introduced attention mechanism. Compared with other classical convolutional neural network classification algorithms such as AlexNet, ResNet-34, ResNet-50, ResNet-101, ConvNeXt-tiny, ConvNeXt-small and ConvNeXt-base, the improved algorithm has better performance on COVID dataset.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467824500360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

针对2019年出现的新型冠状病毒,由于其传染性强,在全球范围内造成了大量的感染患者,为了及时发现传染源,切断传播链,我们针对COVID-19开发了一种准确率高、操作简单、处理速度快的新型胸部x线(CXR)图像分类算法。该算法基于ConvNeXt纯卷积神经网络,对网络结构和损失函数进行了调整,增加了一些新的数据增强方法,并引入了注意机制。与AlexNet、ResNet-34、ResNet-50、ResNet-101、ConvNeXt-tiny、ConvNeXt-small和ConvNeXt-base等经典卷积神经网络分类算法相比,改进算法在COVID数据集上具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved COVID-19 Lung X-Ray Image Classification Algorithm Based on ConvNeXt Network
Aiming at the new coronavirus that appeared in 2019, which has caused a large number of infected patients worldwide due to its high contagiousness, in order to detect the source of infection in time and cut off the chain of transmission, we developed a new Chest X-ray (CXR) image classification algorithm with high accuracy, simple operation and fast processing for COVID-19. The algorithm is based on ConvNeXt pure convolutional neural network, we adjusted the network structure and loss function, added some new Data Augmentation methods and introduced attention mechanism. Compared with other classical convolutional neural network classification algorithms such as AlexNet, ResNet-34, ResNet-50, ResNet-101, ConvNeXt-tiny, ConvNeXt-small and ConvNeXt-base, the improved algorithm has better performance on COVID dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1