{"title":"基于湍流现象学理论的二维和三维壁面射流冲刷标度规律","authors":"Yesheng Lu, N. Cheng, M. Wei, Ai-Min Luo","doi":"10.1080/00221686.2023.2222276","DOIUrl":null,"url":null,"abstract":"The scour induced by wall jets may cause serious bed erosion and thus damage to hydraulic structures. Previous studies are largely empirical, providing only correlations of experimental data. At present, it is not clear what difference exists in the physical mechanisms of two-dimensional (2D) and three-dimensional (3D) wall jet scour. This study first summarizes previous efforts for predicting wall jet scour depths. Then, a scaling analysis is presented for investigating scour depths by applying the phenomenological theory of turbulence. It is shown that for wall jet cases, the dimensionless equilibrium scour depth can generally be expressed as a power function of the densimetric Froude number and relative roughness height, with the power index depending on jet configurations. The predictions of scour depth using the resulting formulas agree well with published data. The present analysis provides new insights into the understanding of the underlying physical mechanisms of wall jet scour as well as the difference between 2D and 3D configurations.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling laws for two- and three-dimensional wall jet scour based on the phenomenological theory of turbulence\",\"authors\":\"Yesheng Lu, N. Cheng, M. Wei, Ai-Min Luo\",\"doi\":\"10.1080/00221686.2023.2222276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scour induced by wall jets may cause serious bed erosion and thus damage to hydraulic structures. Previous studies are largely empirical, providing only correlations of experimental data. At present, it is not clear what difference exists in the physical mechanisms of two-dimensional (2D) and three-dimensional (3D) wall jet scour. This study first summarizes previous efforts for predicting wall jet scour depths. Then, a scaling analysis is presented for investigating scour depths by applying the phenomenological theory of turbulence. It is shown that for wall jet cases, the dimensionless equilibrium scour depth can generally be expressed as a power function of the densimetric Froude number and relative roughness height, with the power index depending on jet configurations. The predictions of scour depth using the resulting formulas agree well with published data. The present analysis provides new insights into the understanding of the underlying physical mechanisms of wall jet scour as well as the difference between 2D and 3D configurations.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2222276\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2222276","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Scaling laws for two- and three-dimensional wall jet scour based on the phenomenological theory of turbulence
The scour induced by wall jets may cause serious bed erosion and thus damage to hydraulic structures. Previous studies are largely empirical, providing only correlations of experimental data. At present, it is not clear what difference exists in the physical mechanisms of two-dimensional (2D) and three-dimensional (3D) wall jet scour. This study first summarizes previous efforts for predicting wall jet scour depths. Then, a scaling analysis is presented for investigating scour depths by applying the phenomenological theory of turbulence. It is shown that for wall jet cases, the dimensionless equilibrium scour depth can generally be expressed as a power function of the densimetric Froude number and relative roughness height, with the power index depending on jet configurations. The predictions of scour depth using the resulting formulas agree well with published data. The present analysis provides new insights into the understanding of the underlying physical mechanisms of wall jet scour as well as the difference between 2D and 3D configurations.
期刊介绍:
The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.