{"title":"江山—绍兴断裂早古生代超铁质岩年代学、地球化学特征及其构造意义","authors":"Cunzhi Wang, Zhizhong Huang, Qingbo Zhu, Guangfu Xing, Guodong Jin, Pingli Chu","doi":"10.1111/iar.12493","DOIUrl":null,"url":null,"abstract":"<p>The origins of early Paleozoic orogen in South China have two different models: subduction model and intra-continental model. Here we report two new identification of ~440 Ma arc-related ultramafic intrusions in Tingzifan (TZF) and Fomuting (FMT) along Jiangshan-Shaoxing fault (JSF) in South China, respectively. The Silurian ultramafic intrusions are composed of olivine pyroxenite, the SiO<sub>2</sub>, MgO and TiO<sub>2</sub> contents of olivine pyroxenites are 39.67–41.25 wt%, 28.98–31.38 wt% and 0.23–0.51 wt%, respectively. The geochemical compositions of the olivines, clinopyroxenes and hornblendes suggest an arc-related environment for these intrusions. As for the whole-rock trace elements, the ultramafic intrusions contain low total rare earth element (REE) contents (27.59–34.26 μg/g) and high field strength elements (HFSEs), such as Nb, Zr, Hf, Ti, and are systematically enriched in large ion lithophile elements and light rare earth elements (LREEs). Trace element compositions share most features of Alaskan-type ultramafic-mafic intrusions. Isotopically, the TZF and FMT ultramafic intrusions are characterized by negative Zircons <i>ε</i><sub>Hf</sub>(<i>t</i>) values (0.38–7.54). Combined with their whole-rock and mineral chemistry as well as zircon Hf isotope, we suggest that the Alaskan-type TZF and FMT pyroxenite were formed at the root of the continental arc by underplating and fractional crystallization of mafic magma which derived from subduction metasomatized mantle source. Thus, we proposed that the early Paleozoic ultramafic–mafic along Jiangshan-Shaoxing fault were most likely related to early Paleozoic subduction of the Paleo-South China Ocean between Cathaysia and Yangtze blocks, arguing that the origins of early Paleozoic orogen in the South China Block is a typical subduction-accretionary collisional-type orogenic belt rather than an intraplate belt.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochronology and geochemistry of early Palaeozoic ultramafic rocks along Jiangshan-Shaoxing Fault and their tectonic significance\",\"authors\":\"Cunzhi Wang, Zhizhong Huang, Qingbo Zhu, Guangfu Xing, Guodong Jin, Pingli Chu\",\"doi\":\"10.1111/iar.12493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The origins of early Paleozoic orogen in South China have two different models: subduction model and intra-continental model. Here we report two new identification of ~440 Ma arc-related ultramafic intrusions in Tingzifan (TZF) and Fomuting (FMT) along Jiangshan-Shaoxing fault (JSF) in South China, respectively. The Silurian ultramafic intrusions are composed of olivine pyroxenite, the SiO<sub>2</sub>, MgO and TiO<sub>2</sub> contents of olivine pyroxenites are 39.67–41.25 wt%, 28.98–31.38 wt% and 0.23–0.51 wt%, respectively. The geochemical compositions of the olivines, clinopyroxenes and hornblendes suggest an arc-related environment for these intrusions. As for the whole-rock trace elements, the ultramafic intrusions contain low total rare earth element (REE) contents (27.59–34.26 μg/g) and high field strength elements (HFSEs), such as Nb, Zr, Hf, Ti, and are systematically enriched in large ion lithophile elements and light rare earth elements (LREEs). Trace element compositions share most features of Alaskan-type ultramafic-mafic intrusions. Isotopically, the TZF and FMT ultramafic intrusions are characterized by negative Zircons <i>ε</i><sub>Hf</sub>(<i>t</i>) values (0.38–7.54). Combined with their whole-rock and mineral chemistry as well as zircon Hf isotope, we suggest that the Alaskan-type TZF and FMT pyroxenite were formed at the root of the continental arc by underplating and fractional crystallization of mafic magma which derived from subduction metasomatized mantle source. Thus, we proposed that the early Paleozoic ultramafic–mafic along Jiangshan-Shaoxing fault were most likely related to early Paleozoic subduction of the Paleo-South China Ocean between Cathaysia and Yangtze blocks, arguing that the origins of early Paleozoic orogen in the South China Block is a typical subduction-accretionary collisional-type orogenic belt rather than an intraplate belt.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12493\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12493","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Geochronology and geochemistry of early Palaeozoic ultramafic rocks along Jiangshan-Shaoxing Fault and their tectonic significance
The origins of early Paleozoic orogen in South China have two different models: subduction model and intra-continental model. Here we report two new identification of ~440 Ma arc-related ultramafic intrusions in Tingzifan (TZF) and Fomuting (FMT) along Jiangshan-Shaoxing fault (JSF) in South China, respectively. The Silurian ultramafic intrusions are composed of olivine pyroxenite, the SiO2, MgO and TiO2 contents of olivine pyroxenites are 39.67–41.25 wt%, 28.98–31.38 wt% and 0.23–0.51 wt%, respectively. The geochemical compositions of the olivines, clinopyroxenes and hornblendes suggest an arc-related environment for these intrusions. As for the whole-rock trace elements, the ultramafic intrusions contain low total rare earth element (REE) contents (27.59–34.26 μg/g) and high field strength elements (HFSEs), such as Nb, Zr, Hf, Ti, and are systematically enriched in large ion lithophile elements and light rare earth elements (LREEs). Trace element compositions share most features of Alaskan-type ultramafic-mafic intrusions. Isotopically, the TZF and FMT ultramafic intrusions are characterized by negative Zircons εHf(t) values (0.38–7.54). Combined with their whole-rock and mineral chemistry as well as zircon Hf isotope, we suggest that the Alaskan-type TZF and FMT pyroxenite were formed at the root of the continental arc by underplating and fractional crystallization of mafic magma which derived from subduction metasomatized mantle source. Thus, we proposed that the early Paleozoic ultramafic–mafic along Jiangshan-Shaoxing fault were most likely related to early Paleozoic subduction of the Paleo-South China Ocean between Cathaysia and Yangtze blocks, arguing that the origins of early Paleozoic orogen in the South China Block is a typical subduction-accretionary collisional-type orogenic belt rather than an intraplate belt.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.