用激光甲烷探测器测量牲畜CH4排放:综述

Methane Pub Date : 2021-12-24 DOI:10.3390/methane1010004
D. Sorg
{"title":"用激光甲烷探测器测量牲畜CH4排放:综述","authors":"D. Sorg","doi":"10.3390/methane1010004","DOIUrl":null,"url":null,"abstract":"The handheld, portable laser methane detector (LMD) was developed to detect gas leaks in industry from a safe distance. Since 2009, it has also been used to measure the methane (CH4) concentration in the breath of cattle, sheep, and goats to quantify their CH4 emissions. As there is no consensus on a uniform measurement and data-analysis protocol with the LMD, this article discusses important aspects of the measurement, the data analysis, and the applications of the LMD based on the literature. These aspects, such as the distance to the animal or the activity of the animals, should be fixed for all measurements of an experiment, and if this is not possible, they should at least be documented and considered as fixed effects in the statistical analysis. Important steps in data processing are thorough quality control and reduction in records to a single point measurement or “phenotype” for later analysis. The LMD can be used to rank animals according to their CH4 breath concentration and to compare average CH4 production at the group level. This makes it suitable for genetic and nutritional studies and for characterising different breeds and husbandry systems. The limitations are the lower accuracy compared to other methods, as only CH4 concentration and not flux can be measured, and the high amount of work required for the measurement. However, due to its flexibility and non-invasiveness, the LMD can be an alternative in environments where other methods are not suitable or a complement to other methods. It would improve the applicability of the LMD method if there were a common protocol for measurement and data analysis developed jointly by a group of researchers.","PeriodicalId":74177,"journal":{"name":"Methane","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Measuring Livestock CH4 Emissions with the Laser Methane Detector: A Review\",\"authors\":\"D. Sorg\",\"doi\":\"10.3390/methane1010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The handheld, portable laser methane detector (LMD) was developed to detect gas leaks in industry from a safe distance. Since 2009, it has also been used to measure the methane (CH4) concentration in the breath of cattle, sheep, and goats to quantify their CH4 emissions. As there is no consensus on a uniform measurement and data-analysis protocol with the LMD, this article discusses important aspects of the measurement, the data analysis, and the applications of the LMD based on the literature. These aspects, such as the distance to the animal or the activity of the animals, should be fixed for all measurements of an experiment, and if this is not possible, they should at least be documented and considered as fixed effects in the statistical analysis. Important steps in data processing are thorough quality control and reduction in records to a single point measurement or “phenotype” for later analysis. The LMD can be used to rank animals according to their CH4 breath concentration and to compare average CH4 production at the group level. This makes it suitable for genetic and nutritional studies and for characterising different breeds and husbandry systems. The limitations are the lower accuracy compared to other methods, as only CH4 concentration and not flux can be measured, and the high amount of work required for the measurement. However, due to its flexibility and non-invasiveness, the LMD can be an alternative in environments where other methods are not suitable or a complement to other methods. It would improve the applicability of the LMD method if there were a common protocol for measurement and data analysis developed jointly by a group of researchers.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane1010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane1010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

开发了手持式便携式激光甲烷检测仪(LMD),用于从安全距离检测工业气体泄漏。自2009年以来,它也被用于测量牛、绵羊和山羊呼吸中的甲烷(CH4)浓度,以量化它们的CH4排放量。由于对LMD的统一测量和数据分析协议没有共识,本文在文献的基础上讨论了LMD的测量、数据分析和应用的重要方面。这些方面,如与动物的距离或动物的活动,对于实验的所有测量都应该是固定的,如果这是不可能的,它们至少应该被记录下来,并在统计分析中被认为是固定的影响。数据处理的重要步骤是彻底的质量控制和减少记录到单点测量或“表型”供以后分析。LMD可用于根据动物呼出的甲烷浓度对其进行排序,并在组水平上比较平均甲烷产量。这使得它适用于遗传和营养研究以及不同品种和饲养系统的特征。其局限性是与其他方法相比,只能测量CH4浓度而不能测量通量,准确度较低,并且测量所需的工作量较大。然而,由于其灵活性和非侵入性,LMD可以在其他方法不适合的环境中作为替代方法或作为其他方法的补充。如果有一个由一组研究人员联合制定的测量和数据分析的共同协议,将改善LMD方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Livestock CH4 Emissions with the Laser Methane Detector: A Review
The handheld, portable laser methane detector (LMD) was developed to detect gas leaks in industry from a safe distance. Since 2009, it has also been used to measure the methane (CH4) concentration in the breath of cattle, sheep, and goats to quantify their CH4 emissions. As there is no consensus on a uniform measurement and data-analysis protocol with the LMD, this article discusses important aspects of the measurement, the data analysis, and the applications of the LMD based on the literature. These aspects, such as the distance to the animal or the activity of the animals, should be fixed for all measurements of an experiment, and if this is not possible, they should at least be documented and considered as fixed effects in the statistical analysis. Important steps in data processing are thorough quality control and reduction in records to a single point measurement or “phenotype” for later analysis. The LMD can be used to rank animals according to their CH4 breath concentration and to compare average CH4 production at the group level. This makes it suitable for genetic and nutritional studies and for characterising different breeds and husbandry systems. The limitations are the lower accuracy compared to other methods, as only CH4 concentration and not flux can be measured, and the high amount of work required for the measurement. However, due to its flexibility and non-invasiveness, the LMD can be an alternative in environments where other methods are not suitable or a complement to other methods. It would improve the applicability of the LMD method if there were a common protocol for measurement and data analysis developed jointly by a group of researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Digestate from a Methane Fermentation Process for Supplying Water and Nutrients in Sweet Potato Cultivation in Sandy Soil Pathways toward Climate-Neutral Red Meat Production Recent Advances in the Use of Controlled Nanocatalysts in Methane Conversion Reactions Dry Reforming of CH4 Using a Microreactor A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1