{"title":"齐次双曲型系统平面跳跃间断的有界性","authors":"J. Rauch","doi":"10.1142/s0219891621500168","DOIUrl":null,"url":null,"abstract":"Suppose that [Formula: see text] is a homogeneous constant coefficient strongly hyperbolic partial differential operator on [Formula: see text] and that [Formula: see text] is a characteristic hyperplane. Suppose that in a conic neighborhood of the conormal variety of [Formula: see text], the characteristic variety of [Formula: see text] is the graph of a real analytic function [Formula: see text] with [Formula: see text] identically equal to zero or the maximal possible value [Formula: see text]. Suppose that the source function [Formula: see text] is compactly supported in [Formula: see text] and piecewise smooth with singularities only on [Formula: see text]. Then the solution of [Formula: see text] with [Formula: see text] for [Formula: see text] is uniformly bounded on [Formula: see text]. Typically when [Formula: see text] on the conormal variety, the sup norm of the jump in the gradient of [Formula: see text] across [Formula: see text] grows linearly with [Formula: see text].","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boundedness of planar jump discontinuities for homogeneous hyperbolic systems\",\"authors\":\"J. Rauch\",\"doi\":\"10.1142/s0219891621500168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that [Formula: see text] is a homogeneous constant coefficient strongly hyperbolic partial differential operator on [Formula: see text] and that [Formula: see text] is a characteristic hyperplane. Suppose that in a conic neighborhood of the conormal variety of [Formula: see text], the characteristic variety of [Formula: see text] is the graph of a real analytic function [Formula: see text] with [Formula: see text] identically equal to zero or the maximal possible value [Formula: see text]. Suppose that the source function [Formula: see text] is compactly supported in [Formula: see text] and piecewise smooth with singularities only on [Formula: see text]. Then the solution of [Formula: see text] with [Formula: see text] for [Formula: see text] is uniformly bounded on [Formula: see text]. Typically when [Formula: see text] on the conormal variety, the sup norm of the jump in the gradient of [Formula: see text] across [Formula: see text] grows linearly with [Formula: see text].\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219891621500168\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891621500168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Boundedness of planar jump discontinuities for homogeneous hyperbolic systems
Suppose that [Formula: see text] is a homogeneous constant coefficient strongly hyperbolic partial differential operator on [Formula: see text] and that [Formula: see text] is a characteristic hyperplane. Suppose that in a conic neighborhood of the conormal variety of [Formula: see text], the characteristic variety of [Formula: see text] is the graph of a real analytic function [Formula: see text] with [Formula: see text] identically equal to zero or the maximal possible value [Formula: see text]. Suppose that the source function [Formula: see text] is compactly supported in [Formula: see text] and piecewise smooth with singularities only on [Formula: see text]. Then the solution of [Formula: see text] with [Formula: see text] for [Formula: see text] is uniformly bounded on [Formula: see text]. Typically when [Formula: see text] on the conormal variety, the sup norm of the jump in the gradient of [Formula: see text] across [Formula: see text] grows linearly with [Formula: see text].
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.