具有阈值效应的因子增强预测回归

IF 2.9 4区 经济学 Q1 ECONOMICS Econometrics Journal Pub Date : 2021-04-06 DOI:10.1093/ECTJ/UTAB011
Yayi Yan, Tingting Cheng
{"title":"具有阈值效应的因子增强预测回归","authors":"Yayi Yan, Tingting Cheng","doi":"10.1093/ECTJ/UTAB011","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a factor-augmented forecasting regression model in the presence of threshold effects. We consider least squares estimation of the regression parameters and establish asymptotic theories for estimators of both slope coefficients and the threshold parameter. Prediction intervals are also constructed for factor-augmented forecasts. Moreover, we develop a likelihood ratio statistic for tests on the threshold parameter and a sup-Wald test statistic for tests on the presence of threshold effects, respectively. Simulation results show that the proposed estimation method and testing procedures work very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through an application to forecasting stock market returns.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Factor-augmented forecasting regressions with threshold effects\",\"authors\":\"Yayi Yan, Tingting Cheng\",\"doi\":\"10.1093/ECTJ/UTAB011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces a factor-augmented forecasting regression model in the presence of threshold effects. We consider least squares estimation of the regression parameters and establish asymptotic theories for estimators of both slope coefficients and the threshold parameter. Prediction intervals are also constructed for factor-augmented forecasts. Moreover, we develop a likelihood ratio statistic for tests on the threshold parameter and a sup-Wald test statistic for tests on the presence of threshold effects, respectively. Simulation results show that the proposed estimation method and testing procedures work very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through an application to forecasting stock market returns.\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/ECTJ/UTAB011\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ECTJ/UTAB011","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种存在阈值效应的因子增广预测回归模型。我们考虑回归参数的最小二乘估计,并建立了斜率系数和阈值参数估计的渐近理论。还为因子增广预测构建了预测区间。此外,我们分别为阈值参数测试开发了似然比统计量,为阈值效应存在测试开发了sup-Wald统计量。仿真结果表明,所提出的估计方法和测试程序在有限样本中运行良好。最后,我们通过预测股票市场收益的应用证明了所提出的模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factor-augmented forecasting regressions with threshold effects
This paper introduces a factor-augmented forecasting regression model in the presence of threshold effects. We consider least squares estimation of the regression parameters and establish asymptotic theories for estimators of both slope coefficients and the threshold parameter. Prediction intervals are also constructed for factor-augmented forecasts. Moreover, we develop a likelihood ratio statistic for tests on the threshold parameter and a sup-Wald test statistic for tests on the presence of threshold effects, respectively. Simulation results show that the proposed estimation method and testing procedures work very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through an application to forecasting stock market returns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
期刊最新文献
The Vector Error Correction Index Model: Representation, Estimation and Identification Double Robustness for Complier Parameters and a Semiparametric Test for Complier Characteristics Revealing priors from posteriors with an application to inflation forecasting in the UK Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1