{"title":"环形ZTA砧座和垫圈的优化;提高负载和压力性能","authors":"N. Funnell, C. Bull, C. Ridley","doi":"10.1080/08957959.2021.1971214","DOIUrl":null,"url":null,"abstract":"ABSTRACT We have modified zirconia-toughened alumina anvil geometry and systematically varied single-toroidal, encapsulated, Ti–Zr gasket dimensions, exploring the resulting effects on pressure and maximum load performance, which have been measured using a Paris–Edinburgh press. Reducing the curvature and depth of the recess at the rear of the anvil appears to permit repeated use of the anvils to higher loads, and a general trend indicates that thinner Ti–Zr gaskets may achieve higher pressures than thicker alternatives.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"306 - 317"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of toroidal ZTA anvils and gaskets; towards improved load and pressure performance\",\"authors\":\"N. Funnell, C. Bull, C. Ridley\",\"doi\":\"10.1080/08957959.2021.1971214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We have modified zirconia-toughened alumina anvil geometry and systematically varied single-toroidal, encapsulated, Ti–Zr gasket dimensions, exploring the resulting effects on pressure and maximum load performance, which have been measured using a Paris–Edinburgh press. Reducing the curvature and depth of the recess at the rear of the anvil appears to permit repeated use of the anvils to higher loads, and a general trend indicates that thinner Ti–Zr gaskets may achieve higher pressures than thicker alternatives.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"41 1\",\"pages\":\"306 - 317\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2021.1971214\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2021.1971214","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimisation of toroidal ZTA anvils and gaskets; towards improved load and pressure performance
ABSTRACT We have modified zirconia-toughened alumina anvil geometry and systematically varied single-toroidal, encapsulated, Ti–Zr gasket dimensions, exploring the resulting effects on pressure and maximum load performance, which have been measured using a Paris–Edinburgh press. Reducing the curvature and depth of the recess at the rear of the anvil appears to permit repeated use of the anvils to higher loads, and a general trend indicates that thinner Ti–Zr gaskets may achieve higher pressures than thicker alternatives.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.