B. Haddow, Rachel Bawden, Antonio Valerio Miceli Barone, Jindvrich Helcl, Alexandra Birch
{"title":"低资源机器翻译研究综述","authors":"B. Haddow, Rachel Bawden, Antonio Valerio Miceli Barone, Jindvrich Helcl, Alexandra Birch","doi":"10.1162/coli_a_00446","DOIUrl":null,"url":null,"abstract":"Abstract We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"48 1","pages":"673-732"},"PeriodicalIF":3.7000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Survey of Low-Resource Machine Translation\",\"authors\":\"B. Haddow, Rachel Bawden, Antonio Valerio Miceli Barone, Jindvrich Helcl, Alexandra Birch\",\"doi\":\"10.1162/coli_a_00446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"48 1\",\"pages\":\"673-732\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00446\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00446","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Abstract We present a survey covering the state of the art in low-resource machine translation (MT) research. There are currently around 7,000 languages spoken in the world and almost all language pairs lack significant resources for training machine translation models. There has been increasing interest in research addressing the challenge of producing useful translation models when very little translated training data is available. We present a summary of this topical research field and provide a description of the techniques evaluated by researchers in several recent shared tasks in low-resource MT.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.