Saskia Erdmann , Rucheng Wang , Fangfang Huang , Bruno Scaillet , Kai Zhao , Hongsheng Liu , Yan Chen , Michel Faure
{"title":"钛铁矿:花岗岩-岩浆系统的潜在固体晴雨表","authors":"Saskia Erdmann , Rucheng Wang , Fangfang Huang , Bruno Scaillet , Kai Zhao , Hongsheng Liu , Yan Chen , Michel Faure","doi":"10.1016/j.crte.2019.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Constraining crystallization pressure and thus intrusion depth of granites in various geodynamic settings remains challenging, yet important to further our understanding of magma system and crustal evolution. We propose that titanite, which is a common accessory in metaluminous and weakly peraluminous granites, can be used as a barometer if it crystallized in magmatic, near-solidus conditions and in equilibrium with amphibole, plagioclase, K-feldspar, quartz, biotite, and magnetite ± ilmenite. Titanite Al<sub>2</sub>O<sub>3</sub> increases with pressure (<em>P</em>) according to: <em>P</em> (in MPa) = 101.66 × Al<sub>2</sub>O<sub>3</sub> in titanite (in wt%) + 59.013 (<em>R</em><sup>2</sup> = 0.83) with estimated uncertainties of ~±60 to ~±100 MPa for crystallization between ~150 and 400 MPa. We highlight that the current calibration dataset is limited, and that systematic experimental studies are needed to rigorously quantify the relation. The most important use of this empirical barometer will be for rocks in which amphibole is present but significantly altered, or in combination with amphibole barometry, as titanite can be easily dated by LA-ICP-MS.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 8","pages":"Pages 551-561"},"PeriodicalIF":2.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2019.09.002","citationCount":"16","resultStr":"{\"title\":\"Titanite: A potential solidus barometer for granitic magma systems\",\"authors\":\"Saskia Erdmann , Rucheng Wang , Fangfang Huang , Bruno Scaillet , Kai Zhao , Hongsheng Liu , Yan Chen , Michel Faure\",\"doi\":\"10.1016/j.crte.2019.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constraining crystallization pressure and thus intrusion depth of granites in various geodynamic settings remains challenging, yet important to further our understanding of magma system and crustal evolution. We propose that titanite, which is a common accessory in metaluminous and weakly peraluminous granites, can be used as a barometer if it crystallized in magmatic, near-solidus conditions and in equilibrium with amphibole, plagioclase, K-feldspar, quartz, biotite, and magnetite ± ilmenite. Titanite Al<sub>2</sub>O<sub>3</sub> increases with pressure (<em>P</em>) according to: <em>P</em> (in MPa) = 101.66 × Al<sub>2</sub>O<sub>3</sub> in titanite (in wt%) + 59.013 (<em>R</em><sup>2</sup> = 0.83) with estimated uncertainties of ~±60 to ~±100 MPa for crystallization between ~150 and 400 MPa. We highlight that the current calibration dataset is limited, and that systematic experimental studies are needed to rigorously quantify the relation. The most important use of this empirical barometer will be for rocks in which amphibole is present but significantly altered, or in combination with amphibole barometry, as titanite can be easily dated by LA-ICP-MS.</p></div>\",\"PeriodicalId\":50651,\"journal\":{\"name\":\"Comptes Rendus Geoscience\",\"volume\":\"351 8\",\"pages\":\"Pages 551-561\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crte.2019.09.002\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631071319300987\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631071319300987","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Titanite: A potential solidus barometer for granitic magma systems
Constraining crystallization pressure and thus intrusion depth of granites in various geodynamic settings remains challenging, yet important to further our understanding of magma system and crustal evolution. We propose that titanite, which is a common accessory in metaluminous and weakly peraluminous granites, can be used as a barometer if it crystallized in magmatic, near-solidus conditions and in equilibrium with amphibole, plagioclase, K-feldspar, quartz, biotite, and magnetite ± ilmenite. Titanite Al2O3 increases with pressure (P) according to: P (in MPa) = 101.66 × Al2O3 in titanite (in wt%) + 59.013 (R2 = 0.83) with estimated uncertainties of ~±60 to ~±100 MPa for crystallization between ~150 and 400 MPa. We highlight that the current calibration dataset is limited, and that systematic experimental studies are needed to rigorously quantify the relation. The most important use of this empirical barometer will be for rocks in which amphibole is present but significantly altered, or in combination with amphibole barometry, as titanite can be easily dated by LA-ICP-MS.
期刊介绍:
Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community.
It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.