IF 1.8 3区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTINGStrainPub Date : 2022-07-19DOI:10.1111/str.12426
M. Rossi, A. Lattanzi, L. Morichelli, J. M. P. Martins, S. Thuillier, A. Andrade-Campos, S. Coppieters
{"title":"金属板材高级塑性模型校准的试验方法:综述","authors":"M. Rossi, A. Lattanzi, L. Morichelli, J. M. P. Martins, S. Thuillier, A. Andrade-Campos, S. Coppieters","doi":"10.1111/str.12426","DOIUrl":null,"url":null,"abstract":"Numerical simulations have become essential in engineering and manufacturing processes involving plasticity. The reliability and effectiveness of the simulations depend strongly on the accuracy of the adopted constitutive model. Accordingly, in recent years, an increasing interest is pointed towards experimental procedures and characterization methods that can be used to identify the constitutive parameters of advanced plasticity models, which allow to simulate properly the plastic behaviour of complex materials like, for instance, high strength steel. This paper provides a thorough review of the current state‐of‐the‐art, looking at both academia and industry. The available methodologies can be subdivided in two main areas: quasi‐homogeneous material tests with analytical or numerical post‐treatment of the experimental data and heterogeneous tests coupled with inverse methods for parameter identification. For each method, a brief description and references to norms and articles is provided, illustrating the advantages and the disadvantages.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Testing methodologies for the calibration of advanced plasticity models for sheet metals: A review\",\"authors\":\"M. Rossi, A. Lattanzi, L. Morichelli, J. M. P. Martins, S. Thuillier, A. Andrade-Campos, S. Coppieters\",\"doi\":\"10.1111/str.12426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulations have become essential in engineering and manufacturing processes involving plasticity. The reliability and effectiveness of the simulations depend strongly on the accuracy of the adopted constitutive model. Accordingly, in recent years, an increasing interest is pointed towards experimental procedures and characterization methods that can be used to identify the constitutive parameters of advanced plasticity models, which allow to simulate properly the plastic behaviour of complex materials like, for instance, high strength steel. This paper provides a thorough review of the current state‐of‐the‐art, looking at both academia and industry. The available methodologies can be subdivided in two main areas: quasi‐homogeneous material tests with analytical or numerical post‐treatment of the experimental data and heterogeneous tests coupled with inverse methods for parameter identification. For each method, a brief description and references to norms and articles is provided, illustrating the advantages and the disadvantages.\",\"PeriodicalId\":51176,\"journal\":{\"name\":\"Strain\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strain\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/str.12426\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12426","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Testing methodologies for the calibration of advanced plasticity models for sheet metals: A review
Numerical simulations have become essential in engineering and manufacturing processes involving plasticity. The reliability and effectiveness of the simulations depend strongly on the accuracy of the adopted constitutive model. Accordingly, in recent years, an increasing interest is pointed towards experimental procedures and characterization methods that can be used to identify the constitutive parameters of advanced plasticity models, which allow to simulate properly the plastic behaviour of complex materials like, for instance, high strength steel. This paper provides a thorough review of the current state‐of‐the‐art, looking at both academia and industry. The available methodologies can be subdivided in two main areas: quasi‐homogeneous material tests with analytical or numerical post‐treatment of the experimental data and heterogeneous tests coupled with inverse methods for parameter identification. For each method, a brief description and references to norms and articles is provided, illustrating the advantages and the disadvantages.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.