G. Prashanth, M. Dileep, P. Prashanth, S. Sreeja Mole, S. Boselin Prabhu, B. Nagabhushana, S. Ravichandran, N. Bhagya
{"title":"基于氧化锌的贵金属纳米复合材料的合成、表征、环境、光学和生物医学应用评价","authors":"G. Prashanth, M. Dileep, P. Prashanth, S. Sreeja Mole, S. Boselin Prabhu, B. Nagabhushana, S. Ravichandran, N. Bhagya","doi":"10.15251/jobm.2021.134.151","DOIUrl":null,"url":null,"abstract":"Metal oxide nanocomposites have concerned an obvious agreement of consideration because of their enormous applications in numerous domains like photocatalyst, catalysis, biological and sensors. The conservational purification technology is getting advanced by the development of heterostructured semiconductor photocatalysts. In this paper, we documented a comparative analysis of synthesis process (Solution-based methods, High temperature-based methods and Electrical methods) and characterisation techniques such as Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and Scanning electron microscopy on various noble Nanocomposites (NCs) of metal (M) - zinc oxide (ZnO/ZO). This review inclines over multiple stat-of-the-art applications like photocatalytic, catalyst, sensor and biological activities. It could be concluded from this study that, the catalytic activity of noble M-ZO nanostructures depends not only on the noble metal species, but on the catalytic material architecture as well. The future research and development challenges together with future prospects are critically presented.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An evaluation of noble nanocomposites based on zinc oxide: synthesis, characterization, environmental, optical and biomedical applications\",\"authors\":\"G. Prashanth, M. Dileep, P. Prashanth, S. Sreeja Mole, S. Boselin Prabhu, B. Nagabhushana, S. Ravichandran, N. Bhagya\",\"doi\":\"10.15251/jobm.2021.134.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal oxide nanocomposites have concerned an obvious agreement of consideration because of their enormous applications in numerous domains like photocatalyst, catalysis, biological and sensors. The conservational purification technology is getting advanced by the development of heterostructured semiconductor photocatalysts. In this paper, we documented a comparative analysis of synthesis process (Solution-based methods, High temperature-based methods and Electrical methods) and characterisation techniques such as Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and Scanning electron microscopy on various noble Nanocomposites (NCs) of metal (M) - zinc oxide (ZnO/ZO). This review inclines over multiple stat-of-the-art applications like photocatalytic, catalyst, sensor and biological activities. It could be concluded from this study that, the catalytic activity of noble M-ZO nanostructures depends not only on the noble metal species, but on the catalytic material architecture as well. The future research and development challenges together with future prospects are critically presented.\",\"PeriodicalId\":43605,\"journal\":{\"name\":\"Journal of Optoelectronic and Biomedical Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optoelectronic and Biomedical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jobm.2021.134.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optoelectronic and Biomedical Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jobm.2021.134.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An evaluation of noble nanocomposites based on zinc oxide: synthesis, characterization, environmental, optical and biomedical applications
Metal oxide nanocomposites have concerned an obvious agreement of consideration because of their enormous applications in numerous domains like photocatalyst, catalysis, biological and sensors. The conservational purification technology is getting advanced by the development of heterostructured semiconductor photocatalysts. In this paper, we documented a comparative analysis of synthesis process (Solution-based methods, High temperature-based methods and Electrical methods) and characterisation techniques such as Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and Scanning electron microscopy on various noble Nanocomposites (NCs) of metal (M) - zinc oxide (ZnO/ZO). This review inclines over multiple stat-of-the-art applications like photocatalytic, catalyst, sensor and biological activities. It could be concluded from this study that, the catalytic activity of noble M-ZO nanostructures depends not only on the noble metal species, but on the catalytic material architecture as well. The future research and development challenges together with future prospects are critically presented.