{"title":"部分数据下分数阶电导率逆问题唯一性的反例","authors":"J. Railo, Philipp Zimmermann","doi":"10.3934/ipi.2022048","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega \\subset {\\mathbb R}^n $\\end{document}</tex-math></inline-formula> and any disjoint open sets <inline-formula><tex-math id=\"M2\">\\begin{document}$ W_1, W_2 \\Subset {\\mathbb R}^n \\setminus \\overline{\\Omega} $\\end{document}</tex-math></inline-formula> there always exist two positive, bounded, smooth, conductivities <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\gamma_1, \\gamma_2 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\gamma_1 \\neq \\gamma_2 $\\end{document}</tex-math></inline-formula>, with equal partial exterior Dirichlet-to-Neumann maps <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\Lambda_{\\gamma_1}f|_{W_2} = \\Lambda_{\\gamma_2}f|_{W_2} $\\end{document}</tex-math></inline-formula> for all <inline-formula><tex-math id=\"M6\">\\begin{document}$ f \\in C_c^{\\infty}(W_1) $\\end{document}</tex-math></inline-formula>. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\gamma_i^{1/2}-1 \\in H^{2s, \\frac{n}{2s}}( {\\mathbb R}^n) $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M8\">\\begin{document}$ i = 1, 2 $\\end{document}</tex-math></inline-formula>. We also provide counterexamples on domains that are bounded in one direction when <inline-formula><tex-math id=\"M9\">\\begin{document}$ n \\geq 4 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M10\">\\begin{document}$ s \\in (0, n/4] $\\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id=\"M11\">\\begin{document}$ n = 2, 3 $\\end{document}</tex-math></inline-formula> using a modification of the argument on bounded domains.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data\",\"authors\":\"J. Railo, Philipp Zimmermann\",\"doi\":\"10.3934/ipi.2022048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\Omega \\\\subset {\\\\mathbb R}^n $\\\\end{document}</tex-math></inline-formula> and any disjoint open sets <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ W_1, W_2 \\\\Subset {\\\\mathbb R}^n \\\\setminus \\\\overline{\\\\Omega} $\\\\end{document}</tex-math></inline-formula> there always exist two positive, bounded, smooth, conductivities <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\gamma_1, \\\\gamma_2 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\gamma_1 \\\\neq \\\\gamma_2 $\\\\end{document}</tex-math></inline-formula>, with equal partial exterior Dirichlet-to-Neumann maps <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\Lambda_{\\\\gamma_1}f|_{W_2} = \\\\Lambda_{\\\\gamma_2}f|_{W_2} $\\\\end{document}</tex-math></inline-formula> for all <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ f \\\\in C_c^{\\\\infty}(W_1) $\\\\end{document}</tex-math></inline-formula>. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\gamma_i^{1/2}-1 \\\\in H^{2s, \\\\frac{n}{2s}}( {\\\\mathbb R}^n) $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ i = 1, 2 $\\\\end{document}</tex-math></inline-formula>. We also provide counterexamples on domains that are bounded in one direction when <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ n \\\\geq 4 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ s \\\\in (0, n/4] $\\\\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ n = 2, 3 $\\\\end{document}</tex-math></inline-formula> using a modification of the argument on bounded domains.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022048\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
摘要
We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain \begin{document}$ \Omega \subset {\mathbb R}^n $\end{document} and any disjoint open sets \begin{document}$ W_1, W_2 \Subset {\mathbb R}^n \setminus \overline{\Omega} $\end{document} there always exist two positive, bounded, smooth, conductivities \begin{document}$ \gamma_1, \gamma_2 $\end{document}, \begin{document}$ \gamma_1 \neq \gamma_2 $\end{document}, with equal partial exterior Dirichlet-to-Neumann maps \begin{document}$ \Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2} $\end{document} for all \begin{document}$ f \in C_c^{\infty}(W_1) $\end{document}. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property \begin{document}$ \gamma_i^{1/2}-1 \in H^{2s, \frac{n}{2s}}( {\mathbb R}^n) $\end{document} for \begin{document}$ i = 1, 2 $\end{document}. We also provide counterexamples on domains that are bounded in one direction when \begin{document}$ n \geq 4 $\end{document} or \begin{document}$ s \in (0, n/4] $\end{document} when \begin{document}$ n = 2, 3 $\end{document} using a modification of the argument on bounded domains.
Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data
We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain \begin{document}$ \Omega \subset {\mathbb R}^n $\end{document} and any disjoint open sets \begin{document}$ W_1, W_2 \Subset {\mathbb R}^n \setminus \overline{\Omega} $\end{document} there always exist two positive, bounded, smooth, conductivities \begin{document}$ \gamma_1, \gamma_2 $\end{document}, \begin{document}$ \gamma_1 \neq \gamma_2 $\end{document}, with equal partial exterior Dirichlet-to-Neumann maps \begin{document}$ \Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2} $\end{document} for all \begin{document}$ f \in C_c^{\infty}(W_1) $\end{document}. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property \begin{document}$ \gamma_i^{1/2}-1 \in H^{2s, \frac{n}{2s}}( {\mathbb R}^n) $\end{document} for \begin{document}$ i = 1, 2 $\end{document}. We also provide counterexamples on domains that are bounded in one direction when \begin{document}$ n \geq 4 $\end{document} or \begin{document}$ s \in (0, n/4] $\end{document} when \begin{document}$ n = 2, 3 $\end{document} using a modification of the argument on bounded domains.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.