利用机器学习优化的多比特翻转软容错TCAM

Infall Syafalni, T. Adiono
{"title":"利用机器学习优化的多比特翻转软容错TCAM","authors":"Infall Syafalni, T. Adiono","doi":"10.25077/jnte.v11n1.1007.2022","DOIUrl":null,"url":null,"abstract":"Soft errors from radiations can change the data in electronic devices especially memory cells such as in TCAMs. The soft errors cause bit-flip errors that makes the data are corrupted in the network. This paper presents a novel machine learning for a multiple-bit-flip-tolerant TCAM that address soft errors problem using partial don't-care keys (X-keys). The general methodology is classified into two steps, i.e., statistical training and X-keys matching. First, we train the machine by collecting match probability of a filter by using X-keys that match the same locations as the search key. This method uses statistical training to determine the most efficient of number of don't cares. Moreover, in the statistical training, we also explore the maximum number of don't cares that produce best performance in covering the soft errors. Finally, the X-keys are implemented in the TCAM to correct bit-flip errors. The suitable number of don't cares in X-key is determined from the distribution of match probability of the X-keys so that the best degree of tolerance of the TCAM against soft errors is found. Match probabilities for various filters are shown. Experimental results demonstrate that the soft-error tolerance using statistical data has better soft-error tolerance than other methods. The proposed method is useful for soft-error tolerant TCAMs in routers and firewalls for robust networks.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Multiple-Bit-Flip Soft-Errors-Tolerant TCAM using Machine Learning\",\"authors\":\"Infall Syafalni, T. Adiono\",\"doi\":\"10.25077/jnte.v11n1.1007.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft errors from radiations can change the data in electronic devices especially memory cells such as in TCAMs. The soft errors cause bit-flip errors that makes the data are corrupted in the network. This paper presents a novel machine learning for a multiple-bit-flip-tolerant TCAM that address soft errors problem using partial don't-care keys (X-keys). The general methodology is classified into two steps, i.e., statistical training and X-keys matching. First, we train the machine by collecting match probability of a filter by using X-keys that match the same locations as the search key. This method uses statistical training to determine the most efficient of number of don't cares. Moreover, in the statistical training, we also explore the maximum number of don't cares that produce best performance in covering the soft errors. Finally, the X-keys are implemented in the TCAM to correct bit-flip errors. The suitable number of don't cares in X-key is determined from the distribution of match probability of the X-keys so that the best degree of tolerance of the TCAM against soft errors is found. Match probabilities for various filters are shown. Experimental results demonstrate that the soft-error tolerance using statistical data has better soft-error tolerance than other methods. The proposed method is useful for soft-error tolerant TCAMs in routers and firewalls for robust networks.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v11n1.1007.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v11n1.1007.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自辐射的软错误可以改变电子设备中的数据,特别是存储器单元,如tcam。软错误导致比特翻转错误,导致网络中的数据损坏。本文提出了一种新的机器学习方法,用于多比特容错TCAM,该方法使用部分不关心密钥(x键)来解决软错误问题。一般的方法分为两个步骤,即统计训练和x键匹配。首先,我们通过使用与搜索键匹配相同位置的x键来收集过滤器的匹配概率来训练机器。该方法使用统计训练来确定最有效的“不关心”数量。此外,在统计训练中,我们还探索了在覆盖软误差时产生最佳性能的最大不在乎数量。最后,在TCAM中实现x键来纠正位翻转错误。根据x键匹配概率的分布确定x键中合适的不关心数,从而找到TCAM对软误差的最佳容忍度。显示了各种过滤器的匹配概率。实验结果表明,基于统计数据的软容错方法比其他方法具有更好的软容错能力。该方法可用于鲁棒网络中路由器和防火墙中的软容错tcam。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Multiple-Bit-Flip Soft-Errors-Tolerant TCAM using Machine Learning
Soft errors from radiations can change the data in electronic devices especially memory cells such as in TCAMs. The soft errors cause bit-flip errors that makes the data are corrupted in the network. This paper presents a novel machine learning for a multiple-bit-flip-tolerant TCAM that address soft errors problem using partial don't-care keys (X-keys). The general methodology is classified into two steps, i.e., statistical training and X-keys matching. First, we train the machine by collecting match probability of a filter by using X-keys that match the same locations as the search key. This method uses statistical training to determine the most efficient of number of don't cares. Moreover, in the statistical training, we also explore the maximum number of don't cares that produce best performance in covering the soft errors. Finally, the X-keys are implemented in the TCAM to correct bit-flip errors. The suitable number of don't cares in X-key is determined from the distribution of match probability of the X-keys so that the best degree of tolerance of the TCAM against soft errors is found. Match probabilities for various filters are shown. Experimental results demonstrate that the soft-error tolerance using statistical data has better soft-error tolerance than other methods. The proposed method is useful for soft-error tolerant TCAMs in routers and firewalls for robust networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1