一种基于重复样本分割的稳定自适应多基因信号检测方法

Pub Date : 2023-03-31 DOI:10.1002/cjs.11768
Yanyan Zhao, Lei Sun
{"title":"一种基于重复样本分割的稳定自适应多基因信号检测方法","authors":"Yanyan Zhao,&nbsp;Lei Sun","doi":"10.1002/cjs.11768","DOIUrl":null,"url":null,"abstract":"<p>Focusing on polygenic signal detection in high-dimensional genetic association studies of complex traits, we develop a stable and adaptive test for generalized linear models to accommodate different alternatives. To facilitate valid post-selection inference for high-dimensional data, our study here adheres to the original sample-splitting principle but does so repeatedly to increase stability of the inference. We show the asymptotic null distribution of the proposed test for both fixed and diverging numbers of variants. We also show the asymptotic properties of the proposed test under local alternatives, providing insights on why power gain attributed to variable selection and weighting can compensate for efficiency loss due to sample splitting. We support our analytical findings through extensive simulation studies and two applications. The proposed procedure is computationally efficient and has been implemented as the <span>R</span> package <span>DoubleCauchy</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stable and adaptive polygenic signal detection method based on repeated sample splitting\",\"authors\":\"Yanyan Zhao,&nbsp;Lei Sun\",\"doi\":\"10.1002/cjs.11768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Focusing on polygenic signal detection in high-dimensional genetic association studies of complex traits, we develop a stable and adaptive test for generalized linear models to accommodate different alternatives. To facilitate valid post-selection inference for high-dimensional data, our study here adheres to the original sample-splitting principle but does so repeatedly to increase stability of the inference. We show the asymptotic null distribution of the proposed test for both fixed and diverging numbers of variants. We also show the asymptotic properties of the proposed test under local alternatives, providing insights on why power gain attributed to variable selection and weighting can compensate for efficiency loss due to sample splitting. We support our analytical findings through extensive simulation studies and two applications. The proposed procedure is computationally efficient and has been implemented as the <span>R</span> package <span>DoubleCauchy</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用多基因风险评分进行性状关联分析和疾病预测对于复杂性状的遗传研究至关重要。有效的推断依赖于样本分割或最近的外部数据,以获得一组潜在的相关遗传变异及其权重,用于构建多基因风险评分。外部数据的使用一直很受欢迎,但由于不同样本之间潜在数据异质性的不利影响,最近的工作越来越多地对其使用提出质疑。我们在这里的研究坚持最初的采样分裂原则,但重复这样做是为了增加我们推断的稳定性。为了适应不同的多基因结构,我们为广义线性模型开发了一种自适应测试。我们提供了所提出的检验的渐近零分布,无论是固定的还是发散的变量数。我们还展示了所提出的测试在局部备选方案下的渐近性质,深入了解了为什么归因于变量选择和加权的功率增益可以补偿由于样本分裂而造成的效率损失。我们通过广泛的模拟研究和应用支持我们的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A stable and adaptive polygenic signal detection method based on repeated sample splitting

Focusing on polygenic signal detection in high-dimensional genetic association studies of complex traits, we develop a stable and adaptive test for generalized linear models to accommodate different alternatives. To facilitate valid post-selection inference for high-dimensional data, our study here adheres to the original sample-splitting principle but does so repeatedly to increase stability of the inference. We show the asymptotic null distribution of the proposed test for both fixed and diverging numbers of variants. We also show the asymptotic properties of the proposed test under local alternatives, providing insights on why power gain attributed to variable selection and weighting can compensate for efficiency loss due to sample splitting. We support our analytical findings through extensive simulation studies and two applications. The proposed procedure is computationally efficient and has been implemented as the R package DoubleCauchy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1