基于改进的扩展卡尔曼滤波器的荷电状态估计

Koto Omiloli, A. Awelewa, Isaac Samuel, Oghorchukwuyem Obiazi, J. Katende
{"title":"基于改进的扩展卡尔曼滤波器的荷电状态估计","authors":"Koto Omiloli, A. Awelewa, Isaac Samuel, Oghorchukwuyem Obiazi, J. Katende","doi":"10.11591/ijece.v13i5.pp5054-5065","DOIUrl":null,"url":null,"abstract":"The global transition from fossil-based automobile systems to their electric-driven counterparts has made the use of a storage device inevitable. Owing to its high energy density, lower self-discharge, and higher cycle lifetime the lithium-ion battery is of significant consideration and usage in electric vehicles. Nevertheless, the state of charge (SOC) of the battery, which cannot be measured directly, must be calculated using an estimator. This paper proposes, by means of a modified priori estimate and a compensating proportional gain, an improved extended Kalman filter (IEKF) for the estimation task due to its nonlinear application and adaptiveness to noise. The improvement was achieved by incorporating the residuals of the previous state matrices to the current state predictor and introducing an attenuating factor in the Kalman gain, which was chosen to counteract the effect of the measurement and process noise resulting in better accuracy performance than the conventional SOC curve fitting-based estimation and ampere hour methods. Simulation results show that the standard EKF estimator results in performance with an error bound of 12.9% due to an unstable start, while the modified EKF reduces the maximum error to within 2.05% demonstrating the quality of the estimator.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of charge estimation based on a modified extended Kalman filter\",\"authors\":\"Koto Omiloli, A. Awelewa, Isaac Samuel, Oghorchukwuyem Obiazi, J. Katende\",\"doi\":\"10.11591/ijece.v13i5.pp5054-5065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global transition from fossil-based automobile systems to their electric-driven counterparts has made the use of a storage device inevitable. Owing to its high energy density, lower self-discharge, and higher cycle lifetime the lithium-ion battery is of significant consideration and usage in electric vehicles. Nevertheless, the state of charge (SOC) of the battery, which cannot be measured directly, must be calculated using an estimator. This paper proposes, by means of a modified priori estimate and a compensating proportional gain, an improved extended Kalman filter (IEKF) for the estimation task due to its nonlinear application and adaptiveness to noise. The improvement was achieved by incorporating the residuals of the previous state matrices to the current state predictor and introducing an attenuating factor in the Kalman gain, which was chosen to counteract the effect of the measurement and process noise resulting in better accuracy performance than the conventional SOC curve fitting-based estimation and ampere hour methods. Simulation results show that the standard EKF estimator results in performance with an error bound of 12.9% due to an unstable start, while the modified EKF reduces the maximum error to within 2.05% demonstrating the quality of the estimator.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5054-5065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5054-5065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

全球从以化石燃料为基础的汽车系统向电力驱动的汽车系统过渡,使得使用存储设备成为不可避免的。锂离子电池具有高能量密度、低自放电、高循环寿命等优点,在电动汽车中具有重要的应用价值。然而,电池的充电状态(SOC)不能直接测量,必须使用估计器计算。本文利用扩展卡尔曼滤波器的非线性应用和对噪声的自适应能力,提出了一种改进的扩展卡尔曼滤波器(IEKF),通过改进的先验估计和补偿比例增益来完成估计任务。改进是通过将先前状态矩阵的残差合并到当前状态预测器中,并在卡尔曼增益中引入衰减因子来抵消测量和过程噪声的影响,从而获得比传统的基于SOC曲线拟合的估计和安培小时方法更好的精度性能。仿真结果表明,由于启动不稳定,标准EKF估计器的性能误差范围为12.9%,而改进的EKF估计器将最大误差降低到2.05%以内,证明了估计器的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State of charge estimation based on a modified extended Kalman filter
The global transition from fossil-based automobile systems to their electric-driven counterparts has made the use of a storage device inevitable. Owing to its high energy density, lower self-discharge, and higher cycle lifetime the lithium-ion battery is of significant consideration and usage in electric vehicles. Nevertheless, the state of charge (SOC) of the battery, which cannot be measured directly, must be calculated using an estimator. This paper proposes, by means of a modified priori estimate and a compensating proportional gain, an improved extended Kalman filter (IEKF) for the estimation task due to its nonlinear application and adaptiveness to noise. The improvement was achieved by incorporating the residuals of the previous state matrices to the current state predictor and introducing an attenuating factor in the Kalman gain, which was chosen to counteract the effect of the measurement and process noise resulting in better accuracy performance than the conventional SOC curve fitting-based estimation and ampere hour methods. Simulation results show that the standard EKF estimator results in performance with an error bound of 12.9% due to an unstable start, while the modified EKF reduces the maximum error to within 2.05% demonstrating the quality of the estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1