P. Satriyo, Chi-Ling Yeh, Jia Chen, T. Aryandono, S. Haryana, T. Chao
{"title":"癌症三阴性靶向肿瘤细胞和肿瘤微环境的双重治疗策略","authors":"P. Satriyo, Chi-Ling Yeh, Jia Chen, T. Aryandono, S. Haryana, T. Chao","doi":"10.4103/JCRP.JCRP_13_20","DOIUrl":null,"url":null,"abstract":"Objective: Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen receptors (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu). Only 30% of TNBC patients show a pathologic complete response, and the other 70% of patients exhibit a less pronounced response followed by relapse and metastasis to distant organs after neoadjuvant chemotherapy. Achievements of immunotherapy targeting programmed cell death 1 ligand 1 (PD-L1) in clinical trials for treating melanoma, nonsmall-cell lung cancer, renal cell carcinoma, and TNBC suggest that targeting the interaction of tumor cells with tumor microenvironment is highly beneficial for cancer treatment. Finding a novel dual-targeting therapy against tumor cells and the tumor microenvironment (TME) may provide options for improved responses in TNBC patients. Data Sources: We searched the potential targeted therapy candidates that regulate tumor cells as well as the TME of cancer diseases, including TNBC, based on our previous and recent other publications. Study Selection: We selected the potential targeted therapies supported by relevance clinical data, in vitro and in vivo studies. Results: In this review, we found the KDM5B, Cadherin 11, β-catenin, CDK2, signal peptide CUB-EGF domain-containing protein 2, and PDL1 regulate the tumor cells and TME of TNBC cells. In addition, we also highlighted the Antrocin, Ovatodiolide, and Pterostilbene as natural small compound possess anti-cancer through the disruption of tumor cell–TME interactions. Conclusion: The new therapy approach targeting tumor cells-TME interaction may improve the response and survival rate of TNBC patients. Later, natural small compounds could provide alternative therapy options for TNBC patients.","PeriodicalId":31219,"journal":{"name":"Journal of Cancer Research and Practice","volume":"7 1","pages":"139 - 148"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual therapeutic strategy targeting tumor cells and tumor microenvironment in triple-negative breast cancer\",\"authors\":\"P. Satriyo, Chi-Ling Yeh, Jia Chen, T. Aryandono, S. Haryana, T. Chao\",\"doi\":\"10.4103/JCRP.JCRP_13_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen receptors (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu). Only 30% of TNBC patients show a pathologic complete response, and the other 70% of patients exhibit a less pronounced response followed by relapse and metastasis to distant organs after neoadjuvant chemotherapy. Achievements of immunotherapy targeting programmed cell death 1 ligand 1 (PD-L1) in clinical trials for treating melanoma, nonsmall-cell lung cancer, renal cell carcinoma, and TNBC suggest that targeting the interaction of tumor cells with tumor microenvironment is highly beneficial for cancer treatment. Finding a novel dual-targeting therapy against tumor cells and the tumor microenvironment (TME) may provide options for improved responses in TNBC patients. Data Sources: We searched the potential targeted therapy candidates that regulate tumor cells as well as the TME of cancer diseases, including TNBC, based on our previous and recent other publications. Study Selection: We selected the potential targeted therapies supported by relevance clinical data, in vitro and in vivo studies. Results: In this review, we found the KDM5B, Cadherin 11, β-catenin, CDK2, signal peptide CUB-EGF domain-containing protein 2, and PDL1 regulate the tumor cells and TME of TNBC cells. In addition, we also highlighted the Antrocin, Ovatodiolide, and Pterostilbene as natural small compound possess anti-cancer through the disruption of tumor cell–TME interactions. Conclusion: The new therapy approach targeting tumor cells-TME interaction may improve the response and survival rate of TNBC patients. Later, natural small compounds could provide alternative therapy options for TNBC patients.\",\"PeriodicalId\":31219,\"journal\":{\"name\":\"Journal of Cancer Research and Practice\",\"volume\":\"7 1\",\"pages\":\"139 - 148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cancer Research and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/JCRP.JCRP_13_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/JCRP.JCRP_13_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual therapeutic strategy targeting tumor cells and tumor microenvironment in triple-negative breast cancer
Objective: Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen receptors (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu). Only 30% of TNBC patients show a pathologic complete response, and the other 70% of patients exhibit a less pronounced response followed by relapse and metastasis to distant organs after neoadjuvant chemotherapy. Achievements of immunotherapy targeting programmed cell death 1 ligand 1 (PD-L1) in clinical trials for treating melanoma, nonsmall-cell lung cancer, renal cell carcinoma, and TNBC suggest that targeting the interaction of tumor cells with tumor microenvironment is highly beneficial for cancer treatment. Finding a novel dual-targeting therapy against tumor cells and the tumor microenvironment (TME) may provide options for improved responses in TNBC patients. Data Sources: We searched the potential targeted therapy candidates that regulate tumor cells as well as the TME of cancer diseases, including TNBC, based on our previous and recent other publications. Study Selection: We selected the potential targeted therapies supported by relevance clinical data, in vitro and in vivo studies. Results: In this review, we found the KDM5B, Cadherin 11, β-catenin, CDK2, signal peptide CUB-EGF domain-containing protein 2, and PDL1 regulate the tumor cells and TME of TNBC cells. In addition, we also highlighted the Antrocin, Ovatodiolide, and Pterostilbene as natural small compound possess anti-cancer through the disruption of tumor cell–TME interactions. Conclusion: The new therapy approach targeting tumor cells-TME interaction may improve the response and survival rate of TNBC patients. Later, natural small compounds could provide alternative therapy options for TNBC patients.
期刊介绍:
JCRP aims to provide an exchange forum for the cancer researchers and practitioners to publish their timely findings in oncologic disciplines. The scope of the Journal covers basic, translational and clinical research, Cancer Biology, Cancer Immunotherapy, Hemato-oncology, Digestive cancer, Urinary tumor, Germ cell tumor, Breast cancer, Lung cancer, Head and Neck Cancer in a vast range of cancer related topics. The Journal also seeks to enhance and advance the cancer care standards in order to provide cancer patients the best care during the treatments.