{"title":"基于知识的全球供应链操作风险管理智能决策支持系统的开发","authors":"Yang-Byung Park, Sung-Joon Yoon, Jun-Su Yoo","doi":"10.1504/EJIE.2018.089878","DOIUrl":null,"url":null,"abstract":"This paper proposes a knowledge-based intelligent decision support system for operational risk management of global supply chains (DSSRMG), a full-phase system not yet treated in the literature. DSSRMG predicts the supply chain performance using the enhanced artificial neural network combined with particle swarm optimisation, infers the core risk source using a method based on principle component analysis, and evaluates risk mitigation alternatives using the digraph-matrix approach combined with principle component analysis. A methodology using an adaptive-network-based fuzzy inference system is suggested to construct the knowledge base for mitigation alternatives. An industrial example is used to illustrate the performance of DSSRMG. Computational experiments show that the techniques used for DSSRMG are excellent. Especially, the algorithm for selecting the useful operation indicators improves the performance prediction accuracy by 7.1% on average. DSSRMG provides supply chain managers with a practical tool to accurately predict and effectively control the operational risk. [Received: 9 March 2017; Revised: 22 July 2017; Accepted: 2 October 2017]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/EJIE.2018.089878","citationCount":"10","resultStr":"{\"title\":\"Development of a knowledge-based intelligent decision support system for operational risk management of global supply chains\",\"authors\":\"Yang-Byung Park, Sung-Joon Yoon, Jun-Su Yoo\",\"doi\":\"10.1504/EJIE.2018.089878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a knowledge-based intelligent decision support system for operational risk management of global supply chains (DSSRMG), a full-phase system not yet treated in the literature. DSSRMG predicts the supply chain performance using the enhanced artificial neural network combined with particle swarm optimisation, infers the core risk source using a method based on principle component analysis, and evaluates risk mitigation alternatives using the digraph-matrix approach combined with principle component analysis. A methodology using an adaptive-network-based fuzzy inference system is suggested to construct the knowledge base for mitigation alternatives. An industrial example is used to illustrate the performance of DSSRMG. Computational experiments show that the techniques used for DSSRMG are excellent. Especially, the algorithm for selecting the useful operation indicators improves the performance prediction accuracy by 7.1% on average. DSSRMG provides supply chain managers with a practical tool to accurately predict and effectively control the operational risk. [Received: 9 March 2017; Revised: 22 July 2017; Accepted: 2 October 2017]\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/EJIE.2018.089878\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/EJIE.2018.089878\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2018.089878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of a knowledge-based intelligent decision support system for operational risk management of global supply chains
This paper proposes a knowledge-based intelligent decision support system for operational risk management of global supply chains (DSSRMG), a full-phase system not yet treated in the literature. DSSRMG predicts the supply chain performance using the enhanced artificial neural network combined with particle swarm optimisation, infers the core risk source using a method based on principle component analysis, and evaluates risk mitigation alternatives using the digraph-matrix approach combined with principle component analysis. A methodology using an adaptive-network-based fuzzy inference system is suggested to construct the knowledge base for mitigation alternatives. An industrial example is used to illustrate the performance of DSSRMG. Computational experiments show that the techniques used for DSSRMG are excellent. Especially, the algorithm for selecting the useful operation indicators improves the performance prediction accuracy by 7.1% on average. DSSRMG provides supply chain managers with a practical tool to accurately predict and effectively control the operational risk. [Received: 9 March 2017; Revised: 22 July 2017; Accepted: 2 October 2017]
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.