在EGFR突变的非小细胞肺癌中,转移性脑疾病的发展涉及通过肺转移的进展。

G. In, J. Mason, Sonia Lin, P. Newton, P. Kuhn, J. Nieva
{"title":"在EGFR突变的非小细胞肺癌中,转移性脑疾病的发展涉及通过肺转移的进展。","authors":"G. In, J. Mason, Sonia Lin, P. Newton, P. Kuhn, J. Nieva","doi":"10.1088/2057-1739/AA7A8D","DOIUrl":null,"url":null,"abstract":"Lung cancer is often classified by the presence of oncogenic drivers, such as epidermal growth factor receptor (EGFR), rather than patterns of anatomical distribution. While metastatic spread may seem a random and unpredictable process, we explored the possibility of using its quantifiable nature as a measure of describing and comparing different subsets of disease. We constructed a database of 664 non-small cell lung cancer (NSCLC) patients treated at the University of Southern California Norris Comprehensive Cancer Center and the Los Angeles County Medical Center. Markov mathematical modeling was employed to assess metastatic sites in a spatiotemporal manner through every time point in progression of disease. Our findings identified a preferential pattern of primary lung disease progressing through lung metastases to the brain amongst EGFR mutated (EGFR m) NSCLC patients, with exon 19 deletions or exon 21 L858R mutations, as compared to EGFR wild type (EGFR wt). The brain was classified as an anatomic \"sponge\", with a higher ratio of incoming to outgoing spread, for EGFR m NSCLC. Bone metastases were more commonly identified in EGFR wt patients. Our study supports a link between the anatomical and molecular characterization of lung metastatic cancer. Improved understanding of the differential biology that drives discordant patterns of anatomic spread, based on genotype specific profiling, has the potential to improve personalized oncologic care.","PeriodicalId":91466,"journal":{"name":"Convergent science physical oncology","volume":"3 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2057-1739/AA7A8D","citationCount":"5","resultStr":"{\"title\":\"Development of metastatic brain disease involves progression through lung metastases in EGFR mutated non-small cell lung cancer.\",\"authors\":\"G. In, J. Mason, Sonia Lin, P. Newton, P. Kuhn, J. Nieva\",\"doi\":\"10.1088/2057-1739/AA7A8D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is often classified by the presence of oncogenic drivers, such as epidermal growth factor receptor (EGFR), rather than patterns of anatomical distribution. While metastatic spread may seem a random and unpredictable process, we explored the possibility of using its quantifiable nature as a measure of describing and comparing different subsets of disease. We constructed a database of 664 non-small cell lung cancer (NSCLC) patients treated at the University of Southern California Norris Comprehensive Cancer Center and the Los Angeles County Medical Center. Markov mathematical modeling was employed to assess metastatic sites in a spatiotemporal manner through every time point in progression of disease. Our findings identified a preferential pattern of primary lung disease progressing through lung metastases to the brain amongst EGFR mutated (EGFR m) NSCLC patients, with exon 19 deletions or exon 21 L858R mutations, as compared to EGFR wild type (EGFR wt). The brain was classified as an anatomic \\\"sponge\\\", with a higher ratio of incoming to outgoing spread, for EGFR m NSCLC. Bone metastases were more commonly identified in EGFR wt patients. Our study supports a link between the anatomical and molecular characterization of lung metastatic cancer. Improved understanding of the differential biology that drives discordant patterns of anatomic spread, based on genotype specific profiling, has the potential to improve personalized oncologic care.\",\"PeriodicalId\":91466,\"journal\":{\"name\":\"Convergent science physical oncology\",\"volume\":\"3 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/2057-1739/AA7A8D\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Convergent science physical oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1739/AA7A8D\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Convergent science physical oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1739/AA7A8D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

肺癌通常根据致癌驱动因素的存在进行分类,如表皮生长因子受体(EGFR),而不是解剖分布模式。虽然转移性扩散似乎是一个随机和不可预测的过程,但我们探索了使用其可量化性质作为描述和比较不同亚群疾病的衡量标准的可能性。我们建立了一个664名在南加州大学诺里斯综合癌症中心和洛杉矶县医疗中心接受治疗的非小细胞肺癌(NSCLC)患者的数据库。采用马尔可夫数学模型通过疾病进展的每个时间点以时空方式评估转移部位。我们的研究发现,与EGFR野生型(EGFR wt)相比,EGFR突变(EGFR m)非小细胞肺癌患者中,具有外显子19缺失或外显子21 L858R突变的原发性肺部疾病通过肺转移到脑的优先模式。对于非小细胞肺癌的EGFR,大脑被归类为解剖学上的“海绵”,具有较高的传入和传出扩散比例。骨转移更常见于EGFR wt患者。我们的研究支持肺转移癌的解剖和分子特征之间的联系。基于基因型特异性分析,提高对驱动不一致解剖扩散模式的差异生物学的理解,具有改善个性化肿瘤护理的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of metastatic brain disease involves progression through lung metastases in EGFR mutated non-small cell lung cancer.
Lung cancer is often classified by the presence of oncogenic drivers, such as epidermal growth factor receptor (EGFR), rather than patterns of anatomical distribution. While metastatic spread may seem a random and unpredictable process, we explored the possibility of using its quantifiable nature as a measure of describing and comparing different subsets of disease. We constructed a database of 664 non-small cell lung cancer (NSCLC) patients treated at the University of Southern California Norris Comprehensive Cancer Center and the Los Angeles County Medical Center. Markov mathematical modeling was employed to assess metastatic sites in a spatiotemporal manner through every time point in progression of disease. Our findings identified a preferential pattern of primary lung disease progressing through lung metastases to the brain amongst EGFR mutated (EGFR m) NSCLC patients, with exon 19 deletions or exon 21 L858R mutations, as compared to EGFR wild type (EGFR wt). The brain was classified as an anatomic "sponge", with a higher ratio of incoming to outgoing spread, for EGFR m NSCLC. Bone metastases were more commonly identified in EGFR wt patients. Our study supports a link between the anatomical and molecular characterization of lung metastatic cancer. Improved understanding of the differential biology that drives discordant patterns of anatomic spread, based on genotype specific profiling, has the potential to improve personalized oncologic care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time for a change: considering the rights of study participants to ownership of their personal research-grade genomic data Meeting report: The physics of life—merging clinical, biological and physical sciences approaches for cancer research Changing cell mechanics—a precondition for malignant transformation of oral squamous carcinoma cells Heterogeneous radiotherapy dose-outcomes response in parotid glands Secondary use of electronic medical records for clinical research: Challenges and Opportunities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1