环境和培养蓝藻是埃及伊蚊杀幼虫剂的来源

Q2 Multidisciplinary Universitas Scientiarum Pub Date : 2019-11-12 DOI:10.11144/javeriana.sc24-3.eacc
Farja I. Ayala, Laura M Becerra, J. Quintana, L. Bayona, Freddy A. Ramos, M. Puyana, F. Duque, L. Castellanos
{"title":"环境和培养蓝藻是埃及伊蚊杀幼虫剂的来源","authors":"Farja I. Ayala, Laura M Becerra, J. Quintana, L. Bayona, Freddy A. Ramos, M. Puyana, F. Duque, L. Castellanos","doi":"10.11144/javeriana.sc24-3.eacc","DOIUrl":null,"url":null,"abstract":"In tropical countries, the control of the mosquito Aedes aegypti is a public health priority due to its role as a vector of important viral diseases. Marine cyanobacteria are recognized as abundant sources of bioactive compounds, and they constitute a potential source of insecticides useful for controlling mosquito populations and preventing epidemic outbreaks. We collected 30 benthic cyanobacterial mats in Providencia and Rosario islands (in the Colombian Caribbean) belonging to the genera Phormidium, Symploca, Oscillatoria, Lyngbya, Pseudoanabaena, Leptolyngbya, Moorea, and Dapis. Fractions of organic extracts from the most abundant environmental samples were evaluated in three bioassays, assessing (i) larvicidal activity against A. aegypti, (ii) toxicity against the brine shrimp (Artemia salina) nauplii, and (iii) acetylcholinesterase inhibition. Non-polar fractions exhibited larvicidal activity. The polar fraction from one Dapis pleuosa extract showed larvicidal activity without being toxic against A. salina nauplii. Extracts from Moorea producens exhibited the greatest toxicity against A. aegypti larvae and A. salina nauplii. From 23 cultured cyanobacterial samples, only five grew under laboratory conditions and produced enough biomass to yield organic extracts. Of these, three extracts showed strong larvicidal activity, but only the extract from Phormidium tenue showed reduced toxicity against A. salina nauplii. We detected variation among the chemical profiles and larvicidal activity of cyanobacterial consortia depending on sites and dates of collection. Our findings suggest that despite variation in chemical profiles, extracts of marine benthic cyanobacteria can be further developed as effective control agents against insect vectors, in their larval stages. The culture of marine benthic cyanobacteria needs to be further explored to provide enough biomass leading to the identification of bioactive compounds with public health applications.","PeriodicalId":39200,"journal":{"name":"Universitas Scientiarum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.11144/javeriana.sc24-3.eacc","citationCount":"2","resultStr":"{\"title\":\"Environmental and cultured cyanobacteria as sources of Aedes aegypti larvicides\",\"authors\":\"Farja I. Ayala, Laura M Becerra, J. Quintana, L. Bayona, Freddy A. Ramos, M. Puyana, F. Duque, L. Castellanos\",\"doi\":\"10.11144/javeriana.sc24-3.eacc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In tropical countries, the control of the mosquito Aedes aegypti is a public health priority due to its role as a vector of important viral diseases. Marine cyanobacteria are recognized as abundant sources of bioactive compounds, and they constitute a potential source of insecticides useful for controlling mosquito populations and preventing epidemic outbreaks. We collected 30 benthic cyanobacterial mats in Providencia and Rosario islands (in the Colombian Caribbean) belonging to the genera Phormidium, Symploca, Oscillatoria, Lyngbya, Pseudoanabaena, Leptolyngbya, Moorea, and Dapis. Fractions of organic extracts from the most abundant environmental samples were evaluated in three bioassays, assessing (i) larvicidal activity against A. aegypti, (ii) toxicity against the brine shrimp (Artemia salina) nauplii, and (iii) acetylcholinesterase inhibition. Non-polar fractions exhibited larvicidal activity. The polar fraction from one Dapis pleuosa extract showed larvicidal activity without being toxic against A. salina nauplii. Extracts from Moorea producens exhibited the greatest toxicity against A. aegypti larvae and A. salina nauplii. From 23 cultured cyanobacterial samples, only five grew under laboratory conditions and produced enough biomass to yield organic extracts. Of these, three extracts showed strong larvicidal activity, but only the extract from Phormidium tenue showed reduced toxicity against A. salina nauplii. We detected variation among the chemical profiles and larvicidal activity of cyanobacterial consortia depending on sites and dates of collection. Our findings suggest that despite variation in chemical profiles, extracts of marine benthic cyanobacteria can be further developed as effective control agents against insect vectors, in their larval stages. The culture of marine benthic cyanobacteria needs to be further explored to provide enough biomass leading to the identification of bioactive compounds with public health applications.\",\"PeriodicalId\":39200,\"journal\":{\"name\":\"Universitas Scientiarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.11144/javeriana.sc24-3.eacc\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universitas Scientiarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11144/javeriana.sc24-3.eacc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universitas Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/javeriana.sc24-3.eacc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 2

摘要

在热带国家,控制埃及伊蚊是一项公共卫生重点,因为它是重要病毒性疾病的媒介。海洋蓝藻被认为是生物活性化合物的丰富来源,它们是控制蚊子种群和预防流行病爆发的杀虫剂的潜在来源。我们在哥伦比亚加勒比海的Providencia和Rosario群岛收集了30个底栖蓝藻垫,分别属于Phormidium、Symploca、Oscillatoria、Lyngbya、Pseudoanabaena、leptolyynbya、Moorea和Dapis属。从最丰富的环境样品中提取的有机提取物的部分进行了三次生物测定,评估了(i)对埃及伊蚊的杀幼虫活性,(ii)对盐水虾(Artemia salina) nauplii的毒性,以及(iii)乙酰胆碱酯酶抑制作用。非极性组分具有杀幼虫活性。一种杏叶提取物的极性组分对褐斑拟南芥有杀幼虫活性,但对褐斑拟南芥无毒。枸杞提取物对埃及伊蚊幼虫和褐纹伊蚊的毒力最强。在23个培养蓝藻样本中,只有5个在实验室条件下生长,产生了足够的生物量来生产有机提取物。其中,3种提取物均有较强的杀幼虫活性,但只有黄颡鱼鱼提取物的杀幼虫活性降低。我们检测到的变化之间的化学概况和幼虫杀灭活性的蓝藻联合体取决于地点和日期的收集。我们的研究结果表明,尽管化学特征存在差异,但海洋底栖蓝藻的提取物可以进一步开发为有效的控制媒介昆虫的剂,在其幼虫阶段。需要进一步探索海洋底栖蓝藻的培养,以提供足够的生物量,从而鉴定具有公共卫生应用的生物活性化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental and cultured cyanobacteria as sources of Aedes aegypti larvicides
In tropical countries, the control of the mosquito Aedes aegypti is a public health priority due to its role as a vector of important viral diseases. Marine cyanobacteria are recognized as abundant sources of bioactive compounds, and they constitute a potential source of insecticides useful for controlling mosquito populations and preventing epidemic outbreaks. We collected 30 benthic cyanobacterial mats in Providencia and Rosario islands (in the Colombian Caribbean) belonging to the genera Phormidium, Symploca, Oscillatoria, Lyngbya, Pseudoanabaena, Leptolyngbya, Moorea, and Dapis. Fractions of organic extracts from the most abundant environmental samples were evaluated in three bioassays, assessing (i) larvicidal activity against A. aegypti, (ii) toxicity against the brine shrimp (Artemia salina) nauplii, and (iii) acetylcholinesterase inhibition. Non-polar fractions exhibited larvicidal activity. The polar fraction from one Dapis pleuosa extract showed larvicidal activity without being toxic against A. salina nauplii. Extracts from Moorea producens exhibited the greatest toxicity against A. aegypti larvae and A. salina nauplii. From 23 cultured cyanobacterial samples, only five grew under laboratory conditions and produced enough biomass to yield organic extracts. Of these, three extracts showed strong larvicidal activity, but only the extract from Phormidium tenue showed reduced toxicity against A. salina nauplii. We detected variation among the chemical profiles and larvicidal activity of cyanobacterial consortia depending on sites and dates of collection. Our findings suggest that despite variation in chemical profiles, extracts of marine benthic cyanobacteria can be further developed as effective control agents against insect vectors, in their larval stages. The culture of marine benthic cyanobacteria needs to be further explored to provide enough biomass leading to the identification of bioactive compounds with public health applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Universitas Scientiarum
Universitas Scientiarum Multidisciplinary-Multidisciplinary
CiteScore
1.20
自引率
0.00%
发文量
9
审稿时长
15 weeks
期刊最新文献
Development of a Bioreactor-Based Model for low-density polyethylene (LDPE) Biodegradation by Aspergillus brasiliensis Optimization of a novel Renealmia ligulata (Zingiberaceae) essential oil extraction method through microwave-assisted hydrodistillation Avoidance Spectrum of Alexandroff Spaces Study of a lytic bacteriophage as a tool for the control of Salmonella Gallinarum in layer poultry Genetic Editing with CRISPR Cas9: recent Biomedical and Biotechnological Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1