天然有机物(NOM)转化及其对水处理过程的影响:当代综述

Manoj Kumar Karnena, Madhavi Konni, Bhavya Kavitha Dwarapureddi, V. Saritha
{"title":"天然有机物(NOM)转化及其对水处理过程的影响:当代综述","authors":"Manoj Kumar Karnena, Madhavi Konni, Bhavya Kavitha Dwarapureddi, V. Saritha","doi":"10.2174/2405520415666211229101553","DOIUrl":null,"url":null,"abstract":"\n\nOne of the several significant concerns related to water treatment plants is the transformation of natural organic matter (NOM) concerning quality and quantity due to the changing climatic conditions. The NOM consists of heterogeneous functionalized groups. Phenolic and carboxyl groups are the dominant groups that are pH-dependent and show a stronger affinity towards the metals. Properties of natural organic matter and trace elements govern the binding kinetics, influencing cations' binding to functionalized groups at lower pH. The water treatment process mechanisms like adsorption, coagulation, membrane filtration, and ion exchange efficiencies are sturdily influenced by the presence of NOM with cations and by the natural organic matter alone. The complexation among the natural organic matter and coagulants enhances the removal of NOM from the coagulation processes. The current review illustrates detailed interactions between natural organic matter and the potential impacts of cations on NOM in the water and wastewater treatment facilities.\n","PeriodicalId":38021,"journal":{"name":"Recent Innovations in Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Natural Organic Matter (NOM) Transformations and their Effects on Water Treatment Process: A Contemporary Review\",\"authors\":\"Manoj Kumar Karnena, Madhavi Konni, Bhavya Kavitha Dwarapureddi, V. Saritha\",\"doi\":\"10.2174/2405520415666211229101553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nOne of the several significant concerns related to water treatment plants is the transformation of natural organic matter (NOM) concerning quality and quantity due to the changing climatic conditions. The NOM consists of heterogeneous functionalized groups. Phenolic and carboxyl groups are the dominant groups that are pH-dependent and show a stronger affinity towards the metals. Properties of natural organic matter and trace elements govern the binding kinetics, influencing cations' binding to functionalized groups at lower pH. The water treatment process mechanisms like adsorption, coagulation, membrane filtration, and ion exchange efficiencies are sturdily influenced by the presence of NOM with cations and by the natural organic matter alone. The complexation among the natural organic matter and coagulants enhances the removal of NOM from the coagulation processes. The current review illustrates detailed interactions between natural organic matter and the potential impacts of cations on NOM in the water and wastewater treatment facilities.\\n\",\"PeriodicalId\":38021,\"journal\":{\"name\":\"Recent Innovations in Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Innovations in Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2405520415666211229101553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Innovations in Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2405520415666211229101553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 3

摘要

与水处理厂相关的几个重要问题之一是由于气候条件的变化,自然有机质(NOM)的质量和数量发生了变化。NOM由异质官能团组成。酚基和羧基是ph依赖性的优势基团,对金属具有较强的亲和力。天然有机物和微量元素的性质控制着结合动力学,影响阳离子在较低ph下与官能团的结合。吸附、混凝、膜过滤和离子交换效率等水处理过程机制都受到带阳离子的NOM的存在和天然有机物本身的影响。天然有机物与混凝剂之间的络合作用增强了混凝过程中NOM的去除率。目前的综述详细阐述了天然有机物与阳离子对水和废水处理设施中NOM的潜在影响之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural Organic Matter (NOM) Transformations and their Effects on Water Treatment Process: A Contemporary Review
One of the several significant concerns related to water treatment plants is the transformation of natural organic matter (NOM) concerning quality and quantity due to the changing climatic conditions. The NOM consists of heterogeneous functionalized groups. Phenolic and carboxyl groups are the dominant groups that are pH-dependent and show a stronger affinity towards the metals. Properties of natural organic matter and trace elements govern the binding kinetics, influencing cations' binding to functionalized groups at lower pH. The water treatment process mechanisms like adsorption, coagulation, membrane filtration, and ion exchange efficiencies are sturdily influenced by the presence of NOM with cations and by the natural organic matter alone. The complexation among the natural organic matter and coagulants enhances the removal of NOM from the coagulation processes. The current review illustrates detailed interactions between natural organic matter and the potential impacts of cations on NOM in the water and wastewater treatment facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Innovations in Chemical Engineering
Recent Innovations in Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
2.10
自引率
0.00%
发文量
20
期刊最新文献
Preparation and properties of biocomposite prepared from waste polystyrene and Prospopis africana biochar Technologies for Treatment of Landfill Leachate: A Brief Review Ionıc Conductıvıty, Dıelectrıc, And Structural Insıghts Of Deep Eutectıc Solvent-Based Polymer Electrolyte: A Revıew Comparative Study of Manufacturing Process Differentiation of Volatile Components in Kenya Purple Tea Variety TRFK 306/1 Unravelling the Supercapacitive Potential of Zn-Ni-Co Mixed Transition Metal Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1