线性烷基苯磺酸盐极性有机化学一体化采样器的研制与性能评价

K. Noro, Y. Yabuki, J. Ono, S. Nakamura
{"title":"线性烷基苯磺酸盐极性有机化学一体化采样器的研制与性能评价","authors":"K. Noro, Y. Yabuki, J. Ono, S. Nakamura","doi":"10.26434/CHEMRXIV.14608164.V1","DOIUrl":null,"url":null,"abstract":"A polar organic chemical integrative sampler (POCIS) was developed for the detection of linear alkylbenzene sulfonates (LASs), which are one of the most widely used chemicals globally and represent a type of surfactant agent. Owing to natural disasters and accidents, these LASs have a potential risk to leak into aquatic environments at high concentrations, and thus far, passive sampling methods have not yet been applied in their detection as, being a sorptive compound, they do not easily permeate the membrane of passive samplers. In the present study, the LASs were significantly sorbed onto the polyethersulfonate (PES) membrane, suggesting that the less sorptive polytetrafluoroethylene (PTFE) membrane is suitable for application in the POCIS device. Calibration experiments showed that the developed POCIS device with Oasis WAX as the sorbent and PTFE as the membrane filter had linear ranges > 28 d and sampling rates ranging from 0.035 ± 0.007 (tetradecylbenzenesulfonate) to 0.139 ± 0.024 (dodecylbenzenesulfonate) L d–1. Furthermore, this developed POCIS device was validated under non-steady-state conditions via both chamber and field tests. The condition in the chamber test replicated the LAS concentration change in rivers contaminated by LAS-leaked accidents. The time-weighted average concentrations of dodecylbenzenesulfonate measured using the improved POCIS agreed well with those obtained via grab sampling within 21% over the sampling period of 14 d in both the chamber and field tests. Therefore, the developed POCIS can be successfully applied in the detection of LASs in LAS-contaminated aquatic environments owing to chemical leak accidents.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development and Evaluation of the Performance of the Polar Organic Chemical Integrative Sampler for Linear Alkylbenzene Sulfonate\",\"authors\":\"K. Noro, Y. Yabuki, J. Ono, S. Nakamura\",\"doi\":\"10.26434/CHEMRXIV.14608164.V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polar organic chemical integrative sampler (POCIS) was developed for the detection of linear alkylbenzene sulfonates (LASs), which are one of the most widely used chemicals globally and represent a type of surfactant agent. Owing to natural disasters and accidents, these LASs have a potential risk to leak into aquatic environments at high concentrations, and thus far, passive sampling methods have not yet been applied in their detection as, being a sorptive compound, they do not easily permeate the membrane of passive samplers. In the present study, the LASs were significantly sorbed onto the polyethersulfonate (PES) membrane, suggesting that the less sorptive polytetrafluoroethylene (PTFE) membrane is suitable for application in the POCIS device. Calibration experiments showed that the developed POCIS device with Oasis WAX as the sorbent and PTFE as the membrane filter had linear ranges > 28 d and sampling rates ranging from 0.035 ± 0.007 (tetradecylbenzenesulfonate) to 0.139 ± 0.024 (dodecylbenzenesulfonate) L d–1. Furthermore, this developed POCIS device was validated under non-steady-state conditions via both chamber and field tests. The condition in the chamber test replicated the LAS concentration change in rivers contaminated by LAS-leaked accidents. The time-weighted average concentrations of dodecylbenzenesulfonate measured using the improved POCIS agreed well with those obtained via grab sampling within 21% over the sampling period of 14 d in both the chamber and field tests. Therefore, the developed POCIS can be successfully applied in the detection of LASs in LAS-contaminated aquatic environments owing to chemical leak accidents.\",\"PeriodicalId\":17480,\"journal\":{\"name\":\"Journal of Water and Environment Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environment Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/CHEMRXIV.14608164.V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/CHEMRXIV.14608164.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

摘要

开发了一种用于检测线性烷基苯磺酸钠(LASs)的极性有机化学综合采样器(POCIS),LASs是全球使用最广泛的化学品之一,是一种表面活性剂。由于自然灾害和事故,这些LAS具有高浓度泄漏到水生环境中的潜在风险,到目前为止,被动采样方法尚未应用于其检测,因为作为一种吸附性化合物,它们不容易渗透到被动采样器的膜中。在本研究中,LAS被显著吸附在聚醚磺酸盐(PES)膜上,这表明吸附性较低的聚四氟乙烯(PTFE)膜适合应用于POCIS装置。校准实验表明,以Oasis WAX为吸附剂,PTFE为膜过滤器的POCIS装置线性范围>28 d,采样率范围从0.035±0.007(十四烷基苯磺酸钠)到0.139±0.024(十二烷基苯磺酰胺)L d–1。此外,通过室内和现场测试,在非稳态条件下验证了这种开发的POCIS设备。室内试验中的条件复制了受LAS泄漏事故污染的河流中LAS浓度的变化。在室内试验和现场试验中,使用改进的POCIS测量的十二烷基苯磺酸钠的时间加权平均浓度与在14天的采样期内通过抓取采样获得的浓度在21%以内非常一致。因此,所开发的POCIS可以成功应用于LAS污染的水环境中因化学品泄漏事故而产生的LAS的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and Evaluation of the Performance of the Polar Organic Chemical Integrative Sampler for Linear Alkylbenzene Sulfonate
A polar organic chemical integrative sampler (POCIS) was developed for the detection of linear alkylbenzene sulfonates (LASs), which are one of the most widely used chemicals globally and represent a type of surfactant agent. Owing to natural disasters and accidents, these LASs have a potential risk to leak into aquatic environments at high concentrations, and thus far, passive sampling methods have not yet been applied in their detection as, being a sorptive compound, they do not easily permeate the membrane of passive samplers. In the present study, the LASs were significantly sorbed onto the polyethersulfonate (PES) membrane, suggesting that the less sorptive polytetrafluoroethylene (PTFE) membrane is suitable for application in the POCIS device. Calibration experiments showed that the developed POCIS device with Oasis WAX as the sorbent and PTFE as the membrane filter had linear ranges > 28 d and sampling rates ranging from 0.035 ± 0.007 (tetradecylbenzenesulfonate) to 0.139 ± 0.024 (dodecylbenzenesulfonate) L d–1. Furthermore, this developed POCIS device was validated under non-steady-state conditions via both chamber and field tests. The condition in the chamber test replicated the LAS concentration change in rivers contaminated by LAS-leaked accidents. The time-weighted average concentrations of dodecylbenzenesulfonate measured using the improved POCIS agreed well with those obtained via grab sampling within 21% over the sampling period of 14 d in both the chamber and field tests. Therefore, the developed POCIS can be successfully applied in the detection of LASs in LAS-contaminated aquatic environments owing to chemical leak accidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water and Environment Technology
Journal of Water and Environment Technology Environmental Science-Water Science and Technology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
43 weeks
期刊介绍: The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.
期刊最新文献
Control of Microcystis Buoyancy by Reducing Cellular Carbohydrate Content at High Temperature Estimating Green and Blue Water Footprint of Major Cereal and Vegetable Crops in Salale Zone, Oromia, Ethiopia Spontaneous Cell Lysis by Pelomonas saccharophila MRB3 Provides Plant-Available Macronutrients in Hydroponic Growth Media and Accelerates Biomass Production of Duckweed Brilliant Green Biosorption from Aqueous Solutions on Okara: Equilibrium, Kinetic and Thermodynamic Studies Synthesis and Optimization of Visible-light-driven G-C3N4/CoMoO4 for the Removal of Tetracycline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1