流形上的概率学习

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2020-02-28 DOI:10.3934/fods.2020013
Christian Soize, R. Ghanem
{"title":"流形上的概率学习","authors":"Christian Soize, R. Ghanem","doi":"10.3934/fods.2020013","DOIUrl":null,"url":null,"abstract":"This paper presents mathematical results in support of the methodology of the probabilistic learning on manifolds (PLoM) recently introduced by the authors, which has been used with success for analyzing complex engineering systems. The PLoM considers a given initial dataset constituted of a small number of points given in an Euclidean space, which are interpreted as independent realizations of a vector-valued random variable for which its non-Gaussian probability measure is unknown but is, \\textit{a priori}, concentrated in an unknown subset of the Euclidean space. The objective is to construct a learned dataset constituted of additional realizations that allow the evaluation of converged statistics. A transport of the probability measure estimated with the initial dataset is done through a linear transformation constructed using a reduced-order diffusion-maps basis. In this paper, it is proven that this transported measure is a marginal distribution of the invariant measure of a reduced-order Ito stochastic differential equation that corresponds to a dissipative Hamiltonian dynamical system. This construction allows for preserving the concentration of the probability measure. This property is shown by analyzing a distance between the random matrix constructed with the PLoM and the matrix representing the initial dataset, as a function of the dimension of the basis. It is further proven that this distance has a minimum for a dimension of the reduced-order diffusion-maps basis that is strictly smaller than the number of points in the initial dataset. Finally, a brief numerical application illustrates the mathematical results.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Probabilistic learning on manifolds\",\"authors\":\"Christian Soize, R. Ghanem\",\"doi\":\"10.3934/fods.2020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents mathematical results in support of the methodology of the probabilistic learning on manifolds (PLoM) recently introduced by the authors, which has been used with success for analyzing complex engineering systems. The PLoM considers a given initial dataset constituted of a small number of points given in an Euclidean space, which are interpreted as independent realizations of a vector-valued random variable for which its non-Gaussian probability measure is unknown but is, \\\\textit{a priori}, concentrated in an unknown subset of the Euclidean space. The objective is to construct a learned dataset constituted of additional realizations that allow the evaluation of converged statistics. A transport of the probability measure estimated with the initial dataset is done through a linear transformation constructed using a reduced-order diffusion-maps basis. In this paper, it is proven that this transported measure is a marginal distribution of the invariant measure of a reduced-order Ito stochastic differential equation that corresponds to a dissipative Hamiltonian dynamical system. This construction allows for preserving the concentration of the probability measure. This property is shown by analyzing a distance between the random matrix constructed with the PLoM and the matrix representing the initial dataset, as a function of the dimension of the basis. It is further proven that this distance has a minimum for a dimension of the reduced-order diffusion-maps basis that is strictly smaller than the number of points in the initial dataset. Finally, a brief numerical application illustrates the mathematical results.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

摘要

本文给出了支持作者最近提出的流形概率学习(PLoM)方法的数学结果,该方法已成功地用于分析复杂工程系统。PLoM考虑一个给定的初始数据集,该数据集由欧几里得空间中给定的少量点组成,这些点被解释为向量值随机变量的独立实现,其非高斯概率测度是未知的,但\textit{先验}地集中在欧几里得空间的未知子集中。目标是构建一个由其他实现组成的学习数据集,这些实现允许对聚合统计进行评估。用初始数据集估计的概率测度的传输是通过使用降阶扩散映射基础构造的线性变换来完成的。本文证明了该传递测度是对应于耗散哈密顿动力系统的降阶Ito随机微分方程不变测度的一个边际分布。这种构造允许保持概率测度的集中。通过分析用PLoM构造的随机矩阵与表示初始数据集的矩阵之间的距离作为基维数的函数来显示这一特性。进一步证明,对于降阶扩散映射基的一个维,该距离有一个最小值,该最小值严格小于初始数据集中的点数。最后,通过一个简单的数值应用说明了数学结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic learning on manifolds
This paper presents mathematical results in support of the methodology of the probabilistic learning on manifolds (PLoM) recently introduced by the authors, which has been used with success for analyzing complex engineering systems. The PLoM considers a given initial dataset constituted of a small number of points given in an Euclidean space, which are interpreted as independent realizations of a vector-valued random variable for which its non-Gaussian probability measure is unknown but is, \textit{a priori}, concentrated in an unknown subset of the Euclidean space. The objective is to construct a learned dataset constituted of additional realizations that allow the evaluation of converged statistics. A transport of the probability measure estimated with the initial dataset is done through a linear transformation constructed using a reduced-order diffusion-maps basis. In this paper, it is proven that this transported measure is a marginal distribution of the invariant measure of a reduced-order Ito stochastic differential equation that corresponds to a dissipative Hamiltonian dynamical system. This construction allows for preserving the concentration of the probability measure. This property is shown by analyzing a distance between the random matrix constructed with the PLoM and the matrix representing the initial dataset, as a function of the dimension of the basis. It is further proven that this distance has a minimum for a dimension of the reduced-order diffusion-maps basis that is strictly smaller than the number of points in the initial dataset. Finally, a brief numerical application illustrates the mathematical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets Noise calibration for SPDEs: A case study for the rotating shallow water model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1