癌症患者生存率的新洛马克斯-瑞利分布分析

IF 0.3 Q4 MATHEMATICS, APPLIED Journal of Applied Mathematics Statistics and Informatics Pub Date : 2023-05-01 DOI:10.2478/jamsi-2023-0002
K. Naga Saritha, G. S. Rao, K. Rosaiah
{"title":"癌症患者生存率的新洛马克斯-瑞利分布分析","authors":"K. Naga Saritha, G. S. Rao, K. Rosaiah","doi":"10.2478/jamsi-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract A new Lomax Rayleigh distribution (NLRD) is proposed and generated using Transformed Transformer (T-X) family generator. Various structural properties like generating functions, moments, limiting form, quantile function median and mode of NLRD are studied. Maximum likelihood estimators (MLEs) of the parameters are obtained and the model fitting is tested with simulated data. Model adequacy with live data is explained with two real-time cancer data sets. The NLRD shows a better fit in the estimation of survival in bile duct cancer and head and neck cancer data than other existing distributions.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Survival analysis of cancer patients using a new Lomax Rayleigh distribution\",\"authors\":\"K. Naga Saritha, G. S. Rao, K. Rosaiah\",\"doi\":\"10.2478/jamsi-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new Lomax Rayleigh distribution (NLRD) is proposed and generated using Transformed Transformer (T-X) family generator. Various structural properties like generating functions, moments, limiting form, quantile function median and mode of NLRD are studied. Maximum likelihood estimators (MLEs) of the parameters are obtained and the model fitting is tested with simulated data. Model adequacy with live data is explained with two real-time cancer data sets. The NLRD shows a better fit in the estimation of survival in bile duct cancer and head and neck cancer data than other existing distributions.\",\"PeriodicalId\":43016,\"journal\":{\"name\":\"Journal of Applied Mathematics Statistics and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jamsi-2023-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要提出了一种新的洛马瑞利分布(NLRD),并利用变换变压器(T-X)族发生器生成。研究了NLRD的生成函数、矩、极限形式、分位数函数中值和模等各种结构性质。获得了参数的最大似然估计量,并用模拟数据对模型拟合进行了检验。用两个实时癌症数据集解释了实时数据的模型充分性。与其他现有分布相比,NLRD在估计癌症胆管和癌症头颈部的存活率方面显示出更好的拟合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Survival analysis of cancer patients using a new Lomax Rayleigh distribution
Abstract A new Lomax Rayleigh distribution (NLRD) is proposed and generated using Transformed Transformer (T-X) family generator. Various structural properties like generating functions, moments, limiting form, quantile function median and mode of NLRD are studied. Maximum likelihood estimators (MLEs) of the parameters are obtained and the model fitting is tested with simulated data. Model adequacy with live data is explained with two real-time cancer data sets. The NLRD shows a better fit in the estimation of survival in bile duct cancer and head and neck cancer data than other existing distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
期刊最新文献
Towards image processing of reentry event Refinement of the general form of the two-point quadrature formulas via convexity Survival analysis of cancer patients using a new Lomax Rayleigh distribution Credit risk analysis using boosting methods Parameterized Simpson-like inequalities for differentiable Bounded and Lipschitzian functions with application example from management science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1