{"title":"基于KDD和nsl-kdd数据集的不同机器学习算法和弱分类器综述","authors":"Rama Devi Ravipati, Munther Abualkibash","doi":"10.5121/IJAIA.2019.10301","DOIUrl":null,"url":null,"abstract":"Network intrusion detection often finds a difficulty in creating classifiers that could handle unequal distributed attack categories. Generally, attacks such as Remote to Local (R2L) and User to Root (U2R) attacks are very rare attacks and even in KDD dataset, these attacks are only 2% of overall datasets. So, these result in model not able to efficiently learn the characteristics of rare categories and this will result in poor detection rates of rare attack categories like R2L and U2R attacks. We even compared the accuracy of KDD and NSL-KDD datasets using different classifiers in WEKA.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10301","citationCount":"6","resultStr":"{\"title\":\"A SURVEY ON DIFFERENT MACHINE LEARNING ALGORITHMS AND WEAK CLASSIFIERS BASED ON KDD AND NSL-KDD DATASETS\",\"authors\":\"Rama Devi Ravipati, Munther Abualkibash\",\"doi\":\"10.5121/IJAIA.2019.10301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network intrusion detection often finds a difficulty in creating classifiers that could handle unequal distributed attack categories. Generally, attacks such as Remote to Local (R2L) and User to Root (U2R) attacks are very rare attacks and even in KDD dataset, these attacks are only 2% of overall datasets. So, these result in model not able to efficiently learn the characteristics of rare categories and this will result in poor detection rates of rare attack categories like R2L and U2R attacks. We even compared the accuracy of KDD and NSL-KDD datasets using different classifiers in WEKA.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10301\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2019.10301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2019.10301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A SURVEY ON DIFFERENT MACHINE LEARNING ALGORITHMS AND WEAK CLASSIFIERS BASED ON KDD AND NSL-KDD DATASETS
Network intrusion detection often finds a difficulty in creating classifiers that could handle unequal distributed attack categories. Generally, attacks such as Remote to Local (R2L) and User to Root (U2R) attacks are very rare attacks and even in KDD dataset, these attacks are only 2% of overall datasets. So, these result in model not able to efficiently learn the characteristics of rare categories and this will result in poor detection rates of rare attack categories like R2L and U2R attacks. We even compared the accuracy of KDD and NSL-KDD datasets using different classifiers in WEKA.