SC、TSO和PSO内存模型的可满足性模序一致性理论

IF 1.5 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Programming Languages and Systems Pub Date : 2023-01-17 DOI:10.1145/3579835
Hongyu Fan, Zhihang Sun, Fei He
{"title":"SC、TSO和PSO内存模型的可满足性模序一致性理论","authors":"Hongyu Fan, Zhihang Sun, Fei He","doi":"10.1145/3579835","DOIUrl":null,"url":null,"abstract":"Automatically verifying multi-threaded programs is difficult because of the vast number of thread interleavings, a problem aggravated by weak memory consistency. Partial orders can help with verification because they can represent many thread interleavings concisely. However, there is no dedicated decision procedure for solving partial-order constraints. In this article, we propose a novel ordering consistency theory for concurrent program verification that is applicable not only under sequential consistency, but also under the TSO and PSO weak memory models. We further develop an efficient theory solver, which checks consistency incrementally, generates minimal conflict clauses, and includes a custom propagation procedure. We have implemented our approach in a tool, called Zord, and have conducted extensive experiments on the SV-COMP 2020 ConcurrencySafety benchmarks. Our experimental results show a significant improvement over the state-of-the-art.","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"45 1","pages":"1 - 37"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satisfiability Modulo Ordering Consistency Theory for SC, TSO, and PSO Memory Models\",\"authors\":\"Hongyu Fan, Zhihang Sun, Fei He\",\"doi\":\"10.1145/3579835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically verifying multi-threaded programs is difficult because of the vast number of thread interleavings, a problem aggravated by weak memory consistency. Partial orders can help with verification because they can represent many thread interleavings concisely. However, there is no dedicated decision procedure for solving partial-order constraints. In this article, we propose a novel ordering consistency theory for concurrent program verification that is applicable not only under sequential consistency, but also under the TSO and PSO weak memory models. We further develop an efficient theory solver, which checks consistency incrementally, generates minimal conflict clauses, and includes a custom propagation procedure. We have implemented our approach in a tool, called Zord, and have conducted extensive experiments on the SV-COMP 2020 ConcurrencySafety benchmarks. Our experimental results show a significant improvement over the state-of-the-art.\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"45 1\",\"pages\":\"1 - 37\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3579835\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3579835","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

由于大量的线程穿插,自动验证多线程程序是困难的,而内存一致性较弱会加剧这个问题。偏序可以帮助验证,因为它们可以简洁地表示许多线程间的交互。然而,没有专门的决策程序来解决偏序约束。在本文中,我们提出了一种新的并行程序验证排序一致性理论,该理论不仅适用于序列一致性,也适用于TSO和PSO弱记忆模型。我们进一步开发了一个高效的理论求解器,它逐步检查一致性,生成最小冲突子句,并包括自定义传播过程。我们在一个名为Zord的工具中实现了我们的方法,并在SV-COMP2020并发安全基准上进行了广泛的实验。我们的实验结果表明,与最先进的技术相比,我们有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Satisfiability Modulo Ordering Consistency Theory for SC, TSO, and PSO Memory Models
Automatically verifying multi-threaded programs is difficult because of the vast number of thread interleavings, a problem aggravated by weak memory consistency. Partial orders can help with verification because they can represent many thread interleavings concisely. However, there is no dedicated decision procedure for solving partial-order constraints. In this article, we propose a novel ordering consistency theory for concurrent program verification that is applicable not only under sequential consistency, but also under the TSO and PSO weak memory models. We further develop an efficient theory solver, which checks consistency incrementally, generates minimal conflict clauses, and includes a custom propagation procedure. We have implemented our approach in a tool, called Zord, and have conducted extensive experiments on the SV-COMP 2020 ConcurrencySafety benchmarks. Our experimental results show a significant improvement over the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Programming Languages and Systems
ACM Transactions on Programming Languages and Systems 工程技术-计算机:软件工程
CiteScore
3.10
自引率
7.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects: language design for sequential and parallel programming programming language implementation programming language semantics compilers and interpreters runtime systems for program execution storage allocation and garbage collection languages and methods for writing program specifications languages and methods for secure and reliable programs testing and verification of programs
期刊最新文献
Proving Correctness of Parallel Implementations of Transition System Models CFLOBDDs: Context-Free-Language Ordered Binary Decision Diagrams Adversities in Abstract Interpretation: Accommodating Robustness by Abstract Interpretation: ACM Transactions on Programming Languages and Systems: Vol 0, No ja Homeostasis: Design and Implementation of a Self-Stabilizing Compiler Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1