{"title":"基于事件的实时多目标跟踪的可重构体系结构","authors":"Yizhao Gao, Song Wang, Hayden Kwok-Hay So","doi":"10.1145/3593587","DOIUrl":null,"url":null,"abstract":"Although advances in event-based machine vision algorithms have demonstrated unparalleled capabilities in performing some of the most demanding tasks, their implementations under stringent real-time and power constraints in edge systems remain a major challenge. In this work, a reconfigurable hardware-software architecture called REMOT, which performs real-time event-based multi-object tracking on FPGAs, is presented. REMOT performs vision tasks by defining a set of actions over attention units (AUs). These actions allow AUs to track an object candidate autonomously by adjusting its region of attention, and allow information gathered by each AU to be used for making algorithmic-level decisions. Taking advantage of this modular structure, algorithm-architecture codesign can be performed by implementing different parts of the algorithm in either hardware or software for different tradeoffs. Results show that REMOT can process 0.43–2.91 million events per second at 1.75–5.45 watts. Compared with the software baseline, our implementation achieves up to 44 times higher throughput and 35.4 times higher power efficiency. Migrating the Merge operation to hardware further reduces the worst-case latency to be 95 times shorter than the software baseline. By varying the AU configuration and operation, a reduction of 0.59–0.77mW per AU on the programmable logic has also been demonstrated.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reconfigurable Architecture for Real-time Event-based Multi-Object Tracking\",\"authors\":\"Yizhao Gao, Song Wang, Hayden Kwok-Hay So\",\"doi\":\"10.1145/3593587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although advances in event-based machine vision algorithms have demonstrated unparalleled capabilities in performing some of the most demanding tasks, their implementations under stringent real-time and power constraints in edge systems remain a major challenge. In this work, a reconfigurable hardware-software architecture called REMOT, which performs real-time event-based multi-object tracking on FPGAs, is presented. REMOT performs vision tasks by defining a set of actions over attention units (AUs). These actions allow AUs to track an object candidate autonomously by adjusting its region of attention, and allow information gathered by each AU to be used for making algorithmic-level decisions. Taking advantage of this modular structure, algorithm-architecture codesign can be performed by implementing different parts of the algorithm in either hardware or software for different tradeoffs. Results show that REMOT can process 0.43–2.91 million events per second at 1.75–5.45 watts. Compared with the software baseline, our implementation achieves up to 44 times higher throughput and 35.4 times higher power efficiency. Migrating the Merge operation to hardware further reduces the worst-case latency to be 95 times shorter than the software baseline. By varying the AU configuration and operation, a reduction of 0.59–0.77mW per AU on the programmable logic has also been demonstrated.\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3593587\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3593587","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Reconfigurable Architecture for Real-time Event-based Multi-Object Tracking
Although advances in event-based machine vision algorithms have demonstrated unparalleled capabilities in performing some of the most demanding tasks, their implementations under stringent real-time and power constraints in edge systems remain a major challenge. In this work, a reconfigurable hardware-software architecture called REMOT, which performs real-time event-based multi-object tracking on FPGAs, is presented. REMOT performs vision tasks by defining a set of actions over attention units (AUs). These actions allow AUs to track an object candidate autonomously by adjusting its region of attention, and allow information gathered by each AU to be used for making algorithmic-level decisions. Taking advantage of this modular structure, algorithm-architecture codesign can be performed by implementing different parts of the algorithm in either hardware or software for different tradeoffs. Results show that REMOT can process 0.43–2.91 million events per second at 1.75–5.45 watts. Compared with the software baseline, our implementation achieves up to 44 times higher throughput and 35.4 times higher power efficiency. Migrating the Merge operation to hardware further reduces the worst-case latency to be 95 times shorter than the software baseline. By varying the AU configuration and operation, a reduction of 0.59–0.77mW per AU on the programmable logic has also been demonstrated.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.