Bin Chen, Xinxin Xu, Yue Wang, Zhuo Yang, Chunhua Liu, Tao Zhang
{"title":"vpa诱导的自闭症通过干扰后代大鼠的神经振荡模式而损害其记忆能力","authors":"Bin Chen, Xinxin Xu, Yue Wang, Zhuo Yang, Chunhua Liu, Tao Zhang","doi":"10.1007/s11571-023-09996-2","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a general neurodevelopmental disease characterized by unusual social communication and rigid, repetitive behavior patterns. The purpose of this study was to investigate the effects of ASD on the alteration of neural oscillatory patterns and synaptic plasticity, which commonly supported a wide range of basic and higher memory activities. Accordingly, a prenatal valproic acid (VPA) exposure rat model was established for studying autism. The behavioral experiments showed that the social orientation declined and the memory ability was significantly impaired in VPA rats, which was closely associated with the synaptic plasticity deficits. Neural oscillation is the rhythmic neuron-activity, and the pathological characteristics and neurological changes in autism may be peeped at the neural oscillatory analysis. Interestingly, neural oscillatory analysis showed that prenatal VPA exposure reduced the low-frequency power but increased high-frequency gamma (HG) power in the hippocampus CA1 area. Meanwhile, the coherence and synchronization between CA3 and CA1 were abnormally increased in the VPA group, especially in theta and HG rhythms. Furthermore, the cross-frequency coupling strength of theta-LG in the CA1 and CA3 → CA1 pathway was significantly attenuated, but the theta-HG coupling strength was increased. Additionally, prenatal VPA exposure inhibited the expression of SYP and NR2B but enhanced the expression of PSD-95 along with decreased synaptic plasticity. The neural oscillatory patterns in VPA-induced offspring were disturbed with the intensity and direction of neural information flow disordered, which are consistent with the changes in synaptic plasticity, suggesting that the decline in synaptic plasticity is the underlying mechanism.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297858/pdf/","citationCount":"0","resultStr":"{\"title\":\"VPA-induced autism impairs memory ability through disturbing neural oscillatory patterns in offspring rats.\",\"authors\":\"Bin Chen, Xinxin Xu, Yue Wang, Zhuo Yang, Chunhua Liu, Tao Zhang\",\"doi\":\"10.1007/s11571-023-09996-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism spectrum disorder (ASD) is a general neurodevelopmental disease characterized by unusual social communication and rigid, repetitive behavior patterns. The purpose of this study was to investigate the effects of ASD on the alteration of neural oscillatory patterns and synaptic plasticity, which commonly supported a wide range of basic and higher memory activities. Accordingly, a prenatal valproic acid (VPA) exposure rat model was established for studying autism. The behavioral experiments showed that the social orientation declined and the memory ability was significantly impaired in VPA rats, which was closely associated with the synaptic plasticity deficits. Neural oscillation is the rhythmic neuron-activity, and the pathological characteristics and neurological changes in autism may be peeped at the neural oscillatory analysis. Interestingly, neural oscillatory analysis showed that prenatal VPA exposure reduced the low-frequency power but increased high-frequency gamma (HG) power in the hippocampus CA1 area. Meanwhile, the coherence and synchronization between CA3 and CA1 were abnormally increased in the VPA group, especially in theta and HG rhythms. Furthermore, the cross-frequency coupling strength of theta-LG in the CA1 and CA3 → CA1 pathway was significantly attenuated, but the theta-HG coupling strength was increased. Additionally, prenatal VPA exposure inhibited the expression of SYP and NR2B but enhanced the expression of PSD-95 along with decreased synaptic plasticity. The neural oscillatory patterns in VPA-induced offspring were disturbed with the intensity and direction of neural information flow disordered, which are consistent with the changes in synaptic plasticity, suggesting that the decline in synaptic plasticity is the underlying mechanism.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09996-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09996-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
VPA-induced autism impairs memory ability through disturbing neural oscillatory patterns in offspring rats.
Autism spectrum disorder (ASD) is a general neurodevelopmental disease characterized by unusual social communication and rigid, repetitive behavior patterns. The purpose of this study was to investigate the effects of ASD on the alteration of neural oscillatory patterns and synaptic plasticity, which commonly supported a wide range of basic and higher memory activities. Accordingly, a prenatal valproic acid (VPA) exposure rat model was established for studying autism. The behavioral experiments showed that the social orientation declined and the memory ability was significantly impaired in VPA rats, which was closely associated with the synaptic plasticity deficits. Neural oscillation is the rhythmic neuron-activity, and the pathological characteristics and neurological changes in autism may be peeped at the neural oscillatory analysis. Interestingly, neural oscillatory analysis showed that prenatal VPA exposure reduced the low-frequency power but increased high-frequency gamma (HG) power in the hippocampus CA1 area. Meanwhile, the coherence and synchronization between CA3 and CA1 were abnormally increased in the VPA group, especially in theta and HG rhythms. Furthermore, the cross-frequency coupling strength of theta-LG in the CA1 and CA3 → CA1 pathway was significantly attenuated, but the theta-HG coupling strength was increased. Additionally, prenatal VPA exposure inhibited the expression of SYP and NR2B but enhanced the expression of PSD-95 along with decreased synaptic plasticity. The neural oscillatory patterns in VPA-induced offspring were disturbed with the intensity and direction of neural information flow disordered, which are consistent with the changes in synaptic plasticity, suggesting that the decline in synaptic plasticity is the underlying mechanism.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.