G. Lafit, J. Adolf, Egon Dejonckheere, I. Myin-Germeys, W. Viechtbauer, E. Ceulemans
{"title":"密集纵向研究中参与者数量的选择:一个用户友好的闪亮应用程序和在考虑时间依赖性的多水平回归模型中执行功率分析的教程","authors":"G. Lafit, J. Adolf, Egon Dejonckheere, I. Myin-Germeys, W. Viechtbauer, E. Ceulemans","doi":"10.1177/2515245920978738","DOIUrl":null,"url":null,"abstract":"In recent years, the popularity of procedures for collecting intensive longitudinal data, such as the experience-sampling method, has increased greatly. The data collected using such designs allow researchers to study the dynamics of psychological functioning and how these dynamics differ across individuals. To this end, the data are often modeled with multilevel regression models. An important question that arises when researchers design intensive longitudinal studies is how to determine the number of participants needed to test specific hypotheses regarding the parameters of these models with sufficient power. Power calculations for intensive longitudinal studies are challenging because of the hierarchical data structure in which repeated observations are nested within the individuals and because of the serial dependence that is typically present in these data. We therefore present a user-friendly application and step-by-step tutorial for performing simulation-based power analyses for a set of models that are popular in intensive longitudinal research. Because many studies use the same sampling protocol (i.e., a fixed number of at least approximately equidistant observations) within individuals, we assume that this protocol is fixed and focus on the number of participants. All included models explicitly account for the temporal dependencies in the data by assuming serially correlated errors or including autoregressive effects.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2515245920978738","citationCount":"46","resultStr":"{\"title\":\"Selection of the Number of Participants in Intensive Longitudinal Studies: A User-Friendly Shiny App and Tutorial for Performing Power Analysis in Multilevel Regression Models That Account for Temporal Dependencies\",\"authors\":\"G. Lafit, J. Adolf, Egon Dejonckheere, I. Myin-Germeys, W. Viechtbauer, E. Ceulemans\",\"doi\":\"10.1177/2515245920978738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the popularity of procedures for collecting intensive longitudinal data, such as the experience-sampling method, has increased greatly. The data collected using such designs allow researchers to study the dynamics of psychological functioning and how these dynamics differ across individuals. To this end, the data are often modeled with multilevel regression models. An important question that arises when researchers design intensive longitudinal studies is how to determine the number of participants needed to test specific hypotheses regarding the parameters of these models with sufficient power. Power calculations for intensive longitudinal studies are challenging because of the hierarchical data structure in which repeated observations are nested within the individuals and because of the serial dependence that is typically present in these data. We therefore present a user-friendly application and step-by-step tutorial for performing simulation-based power analyses for a set of models that are popular in intensive longitudinal research. Because many studies use the same sampling protocol (i.e., a fixed number of at least approximately equidistant observations) within individuals, we assume that this protocol is fixed and focus on the number of participants. All included models explicitly account for the temporal dependencies in the data by assuming serially correlated errors or including autoregressive effects.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2515245920978738\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/2515245920978738\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/2515245920978738","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Selection of the Number of Participants in Intensive Longitudinal Studies: A User-Friendly Shiny App and Tutorial for Performing Power Analysis in Multilevel Regression Models That Account for Temporal Dependencies
In recent years, the popularity of procedures for collecting intensive longitudinal data, such as the experience-sampling method, has increased greatly. The data collected using such designs allow researchers to study the dynamics of psychological functioning and how these dynamics differ across individuals. To this end, the data are often modeled with multilevel regression models. An important question that arises when researchers design intensive longitudinal studies is how to determine the number of participants needed to test specific hypotheses regarding the parameters of these models with sufficient power. Power calculations for intensive longitudinal studies are challenging because of the hierarchical data structure in which repeated observations are nested within the individuals and because of the serial dependence that is typically present in these data. We therefore present a user-friendly application and step-by-step tutorial for performing simulation-based power analyses for a set of models that are popular in intensive longitudinal research. Because many studies use the same sampling protocol (i.e., a fixed number of at least approximately equidistant observations) within individuals, we assume that this protocol is fixed and focus on the number of participants. All included models explicitly account for the temporal dependencies in the data by assuming serially correlated errors or including autoregressive effects.
期刊介绍:
In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions.
The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science.
The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies.
Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.