基于支持向量机的网络评论意见分析

Renato S. C. da Rocha, M. Pacheco, L. Mendoza
{"title":"基于支持向量机的网络评论意见分析","authors":"Renato S. C. da Rocha, M. Pacheco, L. Mendoza","doi":"10.17265/1548-7709/2017.02.005","DOIUrl":null,"url":null,"abstract":"This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using SVM (support vector machine). Weka software and a movie review database from IMDb (internet movie database) were used. This work uses preprocessing filters and WRAPPER techniques and SVM for classification. It presents better results when compared to other preprocessing techniques used in sentiment analysis.","PeriodicalId":69156,"journal":{"name":"通讯和计算机:中英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opinion Analysis on Web-based Reviews Using Support Vector Machine\",\"authors\":\"Renato S. C. da Rocha, M. Pacheco, L. Mendoza\",\"doi\":\"10.17265/1548-7709/2017.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using SVM (support vector machine). Weka software and a movie review database from IMDb (internet movie database) were used. This work uses preprocessing filters and WRAPPER techniques and SVM for classification. It presents better results when compared to other preprocessing techniques used in sentiment analysis.\",\"PeriodicalId\":69156,\"journal\":{\"name\":\"通讯和计算机:中英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"通讯和计算机:中英文版\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.17265/1548-7709/2017.02.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"通讯和计算机:中英文版","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.17265/1548-7709/2017.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作旨在利用情感分析技术、数据挖掘、文本挖掘和自然语言处理,使用SVM(支持向量机)来指示文本的极性。使用Weka软件和IMDb(互联网电影数据库)的电影评论数据库。这项工作使用预处理滤波器和WRAPPER技术以及SVM进行分类。与情绪分析中使用的其他预处理技术相比,它呈现出更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opinion Analysis on Web-based Reviews Using Support Vector Machine
This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using SVM (support vector machine). Weka software and a movie review database from IMDb (internet movie database) were used. This work uses preprocessing filters and WRAPPER techniques and SVM for classification. It presents better results when compared to other preprocessing techniques used in sentiment analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
843
期刊最新文献
A Review of 13,470 Head and Neck Injuries from Trampoline Jumping. A Learning Management System as an Assessment Tool: A Case of MUELE Interpretation of Information Security and Data Privacy Protection According to the Data Use During the Epidemic Propagation Path Loss Models at 28 GHz Using K-Nearest Neighbor Algorithm The Method on Deducing MultiplicityMeasurement Equations of Neutron/g
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1