{"title":"基于支持向量机的网络评论意见分析","authors":"Renato S. C. da Rocha, M. Pacheco, L. Mendoza","doi":"10.17265/1548-7709/2017.02.005","DOIUrl":null,"url":null,"abstract":"This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using SVM (support vector machine). Weka software and a movie review database from IMDb (internet movie database) were used. This work uses preprocessing filters and WRAPPER techniques and SVM for classification. It presents better results when compared to other preprocessing techniques used in sentiment analysis.","PeriodicalId":69156,"journal":{"name":"通讯和计算机:中英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opinion Analysis on Web-based Reviews Using Support Vector Machine\",\"authors\":\"Renato S. C. da Rocha, M. Pacheco, L. Mendoza\",\"doi\":\"10.17265/1548-7709/2017.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using SVM (support vector machine). Weka software and a movie review database from IMDb (internet movie database) were used. This work uses preprocessing filters and WRAPPER techniques and SVM for classification. It presents better results when compared to other preprocessing techniques used in sentiment analysis.\",\"PeriodicalId\":69156,\"journal\":{\"name\":\"通讯和计算机:中英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"通讯和计算机:中英文版\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.17265/1548-7709/2017.02.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"通讯和计算机:中英文版","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.17265/1548-7709/2017.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Opinion Analysis on Web-based Reviews Using Support Vector Machine
This work aims to use sentiment analysis techniques, data mining, text mining and natural language processing to indicate the polarity of texts using SVM (support vector machine). Weka software and a movie review database from IMDb (internet movie database) were used. This work uses preprocessing filters and WRAPPER techniques and SVM for classification. It presents better results when compared to other preprocessing techniques used in sentiment analysis.