{"title":"基于模型多项式表示的快速三维“波一致性”射线断层扫描","authors":"M. Protasov, D. Neklyudov","doi":"10.1080/08123985.2022.2162381","DOIUrl":null,"url":null,"abstract":"In the paper, we describe an original 3D travel-time tomography approach. It is based on the new realization of the bending method which to some extent takes into account the band-limited nature of real seismic signals propagation. As a result, two-point ray tracing provides more reliable ray trajectories and travel times in complex media. Another original feature of the proposed tomography is that the model is represented using the Chebyshev polynomials. Such parameterization allows analytical calculation of travel times and their derivatives with respect to model parameters and significantly reduces the number of parameters to be recovered during inversion compared to more common grid tomography. In certain situations, the proposed approach provides significant computational advantages. Numerical examples prove its efficiency.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast 3D “wave-consistent” ray tomography based on a polynomial representation of a model\",\"authors\":\"M. Protasov, D. Neklyudov\",\"doi\":\"10.1080/08123985.2022.2162381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we describe an original 3D travel-time tomography approach. It is based on the new realization of the bending method which to some extent takes into account the band-limited nature of real seismic signals propagation. As a result, two-point ray tracing provides more reliable ray trajectories and travel times in complex media. Another original feature of the proposed tomography is that the model is represented using the Chebyshev polynomials. Such parameterization allows analytical calculation of travel times and their derivatives with respect to model parameters and significantly reduces the number of parameters to be recovered during inversion compared to more common grid tomography. In certain situations, the proposed approach provides significant computational advantages. Numerical examples prove its efficiency.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/08123985.2022.2162381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2162381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast 3D “wave-consistent” ray tomography based on a polynomial representation of a model
In the paper, we describe an original 3D travel-time tomography approach. It is based on the new realization of the bending method which to some extent takes into account the band-limited nature of real seismic signals propagation. As a result, two-point ray tracing provides more reliable ray trajectories and travel times in complex media. Another original feature of the proposed tomography is that the model is represented using the Chebyshev polynomials. Such parameterization allows analytical calculation of travel times and their derivatives with respect to model parameters and significantly reduces the number of parameters to be recovered during inversion compared to more common grid tomography. In certain situations, the proposed approach provides significant computational advantages. Numerical examples prove its efficiency.