{"title":"基于计算流体动力学的自然通风条件下温室温度事件触发控制","authors":"Xinyi Sun, Hua Yang, Qi-Fang Liu, Yan-Hong Liu","doi":"10.1080/21642583.2020.1833788","DOIUrl":null,"url":null,"abstract":"In this paper, the event-triggered control for greenhouse temperature based on Computational Fluid Dynamics (CFD) is investigated. To overcome the deficiency of sensor which can only represent the temperature value of some points inside the greenhouse, CFD technology is used to simulate and output the temperature field data of the entire greenhouse. Furthermore, in order to reduce the network resource consumption, the event-triggered mechanism is adopted in CFD simulation output-controller channel. When the greenhouse temperature meets the event-triggered condition, the simulated data is transmitted to the controller. Moreover, multi-objective particle swarm optimization (MOPSO) is used to design the controller to solve the contradiction between energy consumption and control accuracy in the control process. Finally, a numerical simulation example is provided to illustrate the effectiveness of given event-triggered scheme for greenhouse temperature under natural ventilation based on CFD simulation. The simulation results show that the control scheme given in this paper can effectively regulate the greenhouse internal temperature and meet the control requirements.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21642583.2020.1833788","citationCount":"2","resultStr":"{\"title\":\"Event-triggered control for greenhouse temperature under natural ventilation based on computational fluid dynamics\",\"authors\":\"Xinyi Sun, Hua Yang, Qi-Fang Liu, Yan-Hong Liu\",\"doi\":\"10.1080/21642583.2020.1833788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the event-triggered control for greenhouse temperature based on Computational Fluid Dynamics (CFD) is investigated. To overcome the deficiency of sensor which can only represent the temperature value of some points inside the greenhouse, CFD technology is used to simulate and output the temperature field data of the entire greenhouse. Furthermore, in order to reduce the network resource consumption, the event-triggered mechanism is adopted in CFD simulation output-controller channel. When the greenhouse temperature meets the event-triggered condition, the simulated data is transmitted to the controller. Moreover, multi-objective particle swarm optimization (MOPSO) is used to design the controller to solve the contradiction between energy consumption and control accuracy in the control process. Finally, a numerical simulation example is provided to illustrate the effectiveness of given event-triggered scheme for greenhouse temperature under natural ventilation based on CFD simulation. The simulation results show that the control scheme given in this paper can effectively regulate the greenhouse internal temperature and meet the control requirements.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21642583.2020.1833788\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2020.1833788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2020.1833788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Event-triggered control for greenhouse temperature under natural ventilation based on computational fluid dynamics
In this paper, the event-triggered control for greenhouse temperature based on Computational Fluid Dynamics (CFD) is investigated. To overcome the deficiency of sensor which can only represent the temperature value of some points inside the greenhouse, CFD technology is used to simulate and output the temperature field data of the entire greenhouse. Furthermore, in order to reduce the network resource consumption, the event-triggered mechanism is adopted in CFD simulation output-controller channel. When the greenhouse temperature meets the event-triggered condition, the simulated data is transmitted to the controller. Moreover, multi-objective particle swarm optimization (MOPSO) is used to design the controller to solve the contradiction between energy consumption and control accuracy in the control process. Finally, a numerical simulation example is provided to illustrate the effectiveness of given event-triggered scheme for greenhouse temperature under natural ventilation based on CFD simulation. The simulation results show that the control scheme given in this paper can effectively regulate the greenhouse internal temperature and meet the control requirements.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory