{"title":"针对永磁同步电机简化模型的闭环控制策略的性能优化,比较了不同的经典和模糊智能控制器","authors":"Chiranjit Sain, A. Banerjee, P. Biswas, V. Balas","doi":"10.1504/IJAAC.2020.10020855","DOIUrl":null,"url":null,"abstract":"In this proposed work, a substantial comparative performance optimisation has been established between the PI, lead, lead-lag and fuzzy logic controllers towards the closed loop control strategies of a simplified permanent magnet synchronous motor (PMSM) drive. By the introduction of sinusoidal pulse width modulation (PWM) control strategy, it is expected that the nature of armature current would be nearly sinusoidal and generated torque ripples will be lesser. In this proposed structure of a PMSM drive, the speed reference has been incorporated with a speed controller to fortify that the exact speed of the proposed motor match with the base speed with null speed error. The overall structure of the PMSM drive is separated into two loop control structure, inner current loop and outer speed loop. All the necessary performance indices of the proposed PMSM drive system are tested in a MATLAB/Simulink environment. Moreover, the performance of a fuzzy logic speed controlled PMSM drive as compared to all classical controllers provides better dynamic as well as steady state performance with reduced torque ripples. Therefore, the entire performance of the proposed simplified PMSM drive in closed loop control strategy is executed and efficacy of controllers is resolved under various operating conditions. Hence, the superiority of intelligent speed controller (fuzzy logic controller) for this proposed PMSM drive model over all classical controllers is validated and optimised for high performance applications. Finally, an auto-tuning control strategy for the fuzzy intelligent speed controller is also proposed for optimal operation of the drive system.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":"14 1","pages":"469-493"},"PeriodicalIF":1.3000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Optimization for Closed Loop Control Strategies towards Simplified Model of a PMSM Drive by Comparing with Different Classical and Fuzzy Intelligent Controllers\",\"authors\":\"Chiranjit Sain, A. Banerjee, P. Biswas, V. Balas\",\"doi\":\"10.1504/IJAAC.2020.10020855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this proposed work, a substantial comparative performance optimisation has been established between the PI, lead, lead-lag and fuzzy logic controllers towards the closed loop control strategies of a simplified permanent magnet synchronous motor (PMSM) drive. By the introduction of sinusoidal pulse width modulation (PWM) control strategy, it is expected that the nature of armature current would be nearly sinusoidal and generated torque ripples will be lesser. In this proposed structure of a PMSM drive, the speed reference has been incorporated with a speed controller to fortify that the exact speed of the proposed motor match with the base speed with null speed error. The overall structure of the PMSM drive is separated into two loop control structure, inner current loop and outer speed loop. All the necessary performance indices of the proposed PMSM drive system are tested in a MATLAB/Simulink environment. Moreover, the performance of a fuzzy logic speed controlled PMSM drive as compared to all classical controllers provides better dynamic as well as steady state performance with reduced torque ripples. Therefore, the entire performance of the proposed simplified PMSM drive in closed loop control strategy is executed and efficacy of controllers is resolved under various operating conditions. Hence, the superiority of intelligent speed controller (fuzzy logic controller) for this proposed PMSM drive model over all classical controllers is validated and optimised for high performance applications. Finally, an auto-tuning control strategy for the fuzzy intelligent speed controller is also proposed for optimal operation of the drive system.\",\"PeriodicalId\":45089,\"journal\":{\"name\":\"International Journal of Automation and Control\",\"volume\":\"14 1\",\"pages\":\"469-493\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAAC.2020.10020855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAAC.2020.10020855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Performance Optimization for Closed Loop Control Strategies towards Simplified Model of a PMSM Drive by Comparing with Different Classical and Fuzzy Intelligent Controllers
In this proposed work, a substantial comparative performance optimisation has been established between the PI, lead, lead-lag and fuzzy logic controllers towards the closed loop control strategies of a simplified permanent magnet synchronous motor (PMSM) drive. By the introduction of sinusoidal pulse width modulation (PWM) control strategy, it is expected that the nature of armature current would be nearly sinusoidal and generated torque ripples will be lesser. In this proposed structure of a PMSM drive, the speed reference has been incorporated with a speed controller to fortify that the exact speed of the proposed motor match with the base speed with null speed error. The overall structure of the PMSM drive is separated into two loop control structure, inner current loop and outer speed loop. All the necessary performance indices of the proposed PMSM drive system are tested in a MATLAB/Simulink environment. Moreover, the performance of a fuzzy logic speed controlled PMSM drive as compared to all classical controllers provides better dynamic as well as steady state performance with reduced torque ripples. Therefore, the entire performance of the proposed simplified PMSM drive in closed loop control strategy is executed and efficacy of controllers is resolved under various operating conditions. Hence, the superiority of intelligent speed controller (fuzzy logic controller) for this proposed PMSM drive model over all classical controllers is validated and optimised for high performance applications. Finally, an auto-tuning control strategy for the fuzzy intelligent speed controller is also proposed for optimal operation of the drive system.
期刊介绍:
IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications