{"title":"层流-湍流过渡附近工业规模浆料管道中的长时间瞬态","authors":"A. Dash, C. Poelma","doi":"10.1017/flo.2022.18","DOIUrl":null,"url":null,"abstract":"Abstract We revisit the laminar–turbulent transition of a fine-grained slurry in a large pipe. The combination of long measurement times in an industrial-scale facility and ultrasound imaging allows us to observe and address anomalous trends. Under turbulent conditions, the flow is homogeneous and steady. However, under laminar conditions, two types of long-time-scale transient behaviours are captured. In the first scenario, the system has been homogenized, following which the flow rate is reduced to laminar conditions. The flow rate continues to gradually drop, while particles settle and form a stationary bed. In the second scenario, the system has been shut down for a prolonged period and the flow rate is slowly increased. The flow rate continues to rise while particles are slowly resuspended from the gradually eroding bed. Near the laminar–turbulent transition point, two types of intermittent structures are responsible for resuspension. The equilibrium phase, with steady flow rate, coincides with complete resuspension. These two long-time-scale transients correspond to the phenomena of ‘slow settling’ and ‘self-equilibration’, respectively. While the former can lead to shutdowns, the latter generates a stable system. Being aware of these phenomena is of relevance while operating slurry pipelines near the favourable operating point of the laminar–turbulent transition.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time-scale transients in an industrial-scale slurry pipeline near the laminar–turbulent transition\",\"authors\":\"A. Dash, C. Poelma\",\"doi\":\"10.1017/flo.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We revisit the laminar–turbulent transition of a fine-grained slurry in a large pipe. The combination of long measurement times in an industrial-scale facility and ultrasound imaging allows us to observe and address anomalous trends. Under turbulent conditions, the flow is homogeneous and steady. However, under laminar conditions, two types of long-time-scale transient behaviours are captured. In the first scenario, the system has been homogenized, following which the flow rate is reduced to laminar conditions. The flow rate continues to gradually drop, while particles settle and form a stationary bed. In the second scenario, the system has been shut down for a prolonged period and the flow rate is slowly increased. The flow rate continues to rise while particles are slowly resuspended from the gradually eroding bed. Near the laminar–turbulent transition point, two types of intermittent structures are responsible for resuspension. The equilibrium phase, with steady flow rate, coincides with complete resuspension. These two long-time-scale transients correspond to the phenomena of ‘slow settling’ and ‘self-equilibration’, respectively. While the former can lead to shutdowns, the latter generates a stable system. Being aware of these phenomena is of relevance while operating slurry pipelines near the favourable operating point of the laminar–turbulent transition.\",\"PeriodicalId\":93752,\"journal\":{\"name\":\"Flow (Cambridge, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/flo.2022.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2022.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Long-time-scale transients in an industrial-scale slurry pipeline near the laminar–turbulent transition
Abstract We revisit the laminar–turbulent transition of a fine-grained slurry in a large pipe. The combination of long measurement times in an industrial-scale facility and ultrasound imaging allows us to observe and address anomalous trends. Under turbulent conditions, the flow is homogeneous and steady. However, under laminar conditions, two types of long-time-scale transient behaviours are captured. In the first scenario, the system has been homogenized, following which the flow rate is reduced to laminar conditions. The flow rate continues to gradually drop, while particles settle and form a stationary bed. In the second scenario, the system has been shut down for a prolonged period and the flow rate is slowly increased. The flow rate continues to rise while particles are slowly resuspended from the gradually eroding bed. Near the laminar–turbulent transition point, two types of intermittent structures are responsible for resuspension. The equilibrium phase, with steady flow rate, coincides with complete resuspension. These two long-time-scale transients correspond to the phenomena of ‘slow settling’ and ‘self-equilibration’, respectively. While the former can lead to shutdowns, the latter generates a stable system. Being aware of these phenomena is of relevance while operating slurry pipelines near the favourable operating point of the laminar–turbulent transition.