{"title":"浸没在磁场中的载流导线的拉普拉斯力的起源","authors":"M. Finazzi, M. Zani","doi":"10.1119/5.0096757","DOIUrl":null,"url":null,"abstract":"The macroscopic force (called the Laplace force) acting on a wire carrying an electric current placed in a magnetic field is a consequence of the Lorentz force acting on each charge inside the wire. Typically, the Laplace force is explained as a magnetic force resulting from the interaction of the moving charges with the external magnetic field. Such an interpretation, however, is too simplistic and does not take into account all the interactions between the various charge populations inside the wire. This leads to a series of paradoxes that might hinder the understanding of this subject. For instance, a magnetic force cannot do any work, while a current-carrying wire in a magnetic field represents the paradigm to understand the working principle of an electric motor. Here, we will solve this and other inconsistencies by showing, with simple arguments comprehensible to undergraduate students, that the Laplace force is instead an electrostatic force.","PeriodicalId":48709,"journal":{"name":"Physics Teacher","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin of the Laplace Force Applied to a Current-Carrying Wire Immersed in a Magnetic Field\",\"authors\":\"M. Finazzi, M. Zani\",\"doi\":\"10.1119/5.0096757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The macroscopic force (called the Laplace force) acting on a wire carrying an electric current placed in a magnetic field is a consequence of the Lorentz force acting on each charge inside the wire. Typically, the Laplace force is explained as a magnetic force resulting from the interaction of the moving charges with the external magnetic field. Such an interpretation, however, is too simplistic and does not take into account all the interactions between the various charge populations inside the wire. This leads to a series of paradoxes that might hinder the understanding of this subject. For instance, a magnetic force cannot do any work, while a current-carrying wire in a magnetic field represents the paradigm to understand the working principle of an electric motor. Here, we will solve this and other inconsistencies by showing, with simple arguments comprehensible to undergraduate students, that the Laplace force is instead an electrostatic force.\",\"PeriodicalId\":48709,\"journal\":{\"name\":\"Physics Teacher\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Teacher\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0096757\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Teacher","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1119/5.0096757","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Origin of the Laplace Force Applied to a Current-Carrying Wire Immersed in a Magnetic Field
The macroscopic force (called the Laplace force) acting on a wire carrying an electric current placed in a magnetic field is a consequence of the Lorentz force acting on each charge inside the wire. Typically, the Laplace force is explained as a magnetic force resulting from the interaction of the moving charges with the external magnetic field. Such an interpretation, however, is too simplistic and does not take into account all the interactions between the various charge populations inside the wire. This leads to a series of paradoxes that might hinder the understanding of this subject. For instance, a magnetic force cannot do any work, while a current-carrying wire in a magnetic field represents the paradigm to understand the working principle of an electric motor. Here, we will solve this and other inconsistencies by showing, with simple arguments comprehensible to undergraduate students, that the Laplace force is instead an electrostatic force.
期刊介绍:
TPT publishes peer-reviewed papers on the teaching of introductory physics and on topics such as contemporary physics, applied physics, and the history of physics. Dedicated to strengthening the teaching of introductory physics at all levels, including secondary schools colleges and universities, TPT provides peer-reviewed content and materials to be used in classrooms and instructional laboratories.