{"title":"用答案集编程处理布尔网络和吸引子计算:在细胞基因调控网络中的应用","authors":"Tarek Khaled, Belaid Benhamou, Van-Giang Trinh","doi":"10.1007/s10472-023-09886-7","DOIUrl":null,"url":null,"abstract":"<div><p>Deciphering gene regulatory networks’ functioning is an essential step for better understanding of life, as these networks play a fundamental role in the control of cellular processes. Boolean networks have been widely used to represent gene regulatory networks. They allow to describe the dynamics of complex gene regulatory networks straightforwardly and efficiently. The attractors are essential in the analysis of the dynamics of a Boolean network. They explain that a particular cell can acquire specific phenotypes that may be transmitted over several generations. In this work, we consider a new representation of Boolean networks’ dynamics based on a new semantics used in Answer Set Programming (ASP). We use logic programs and ASP to express and deal with gene regulatory networks seen as Boolean networks, and develop a method to detect all the attractors of such networks. We first show how to represent and deal with general Boolean networks for the synchronous and asynchronous updates modes, where the computation of attractors requires a simulation of these networks’ dynamics. Then, we propose an approach for the particular case of circular networks where no simulation is needed. This last specific case plays an essential role in biological systems. We show several theoretical properties; in particular, simple attractors of the gene networks are represented by the stable models of the corresponding logic programs and cyclic attractors by its extra-stable models. These extra-stable models correspond to the extra-extensions of the new semantics that are not captured by the semantics of stable models. We then evaluate the proposed approach for general Boolean networks on real biological networks and the one dedicated to the case of circular networks on Boolean networks generated randomly. The obtained results for both approaches are encouraging.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"91 5","pages":"713 - 750"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10472-023-09886-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Using answer set programming to deal with boolean networks and attractor computation: application to gene regulatory networks of cells\",\"authors\":\"Tarek Khaled, Belaid Benhamou, Van-Giang Trinh\",\"doi\":\"10.1007/s10472-023-09886-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deciphering gene regulatory networks’ functioning is an essential step for better understanding of life, as these networks play a fundamental role in the control of cellular processes. Boolean networks have been widely used to represent gene regulatory networks. They allow to describe the dynamics of complex gene regulatory networks straightforwardly and efficiently. The attractors are essential in the analysis of the dynamics of a Boolean network. They explain that a particular cell can acquire specific phenotypes that may be transmitted over several generations. In this work, we consider a new representation of Boolean networks’ dynamics based on a new semantics used in Answer Set Programming (ASP). We use logic programs and ASP to express and deal with gene regulatory networks seen as Boolean networks, and develop a method to detect all the attractors of such networks. We first show how to represent and deal with general Boolean networks for the synchronous and asynchronous updates modes, where the computation of attractors requires a simulation of these networks’ dynamics. Then, we propose an approach for the particular case of circular networks where no simulation is needed. This last specific case plays an essential role in biological systems. We show several theoretical properties; in particular, simple attractors of the gene networks are represented by the stable models of the corresponding logic programs and cyclic attractors by its extra-stable models. These extra-stable models correspond to the extra-extensions of the new semantics that are not captured by the semantics of stable models. We then evaluate the proposed approach for general Boolean networks on real biological networks and the one dedicated to the case of circular networks on Boolean networks generated randomly. The obtained results for both approaches are encouraging.</p></div>\",\"PeriodicalId\":7971,\"journal\":{\"name\":\"Annals of Mathematics and Artificial Intelligence\",\"volume\":\"91 5\",\"pages\":\"713 - 750\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10472-023-09886-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10472-023-09886-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09886-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Using answer set programming to deal with boolean networks and attractor computation: application to gene regulatory networks of cells
Deciphering gene regulatory networks’ functioning is an essential step for better understanding of life, as these networks play a fundamental role in the control of cellular processes. Boolean networks have been widely used to represent gene regulatory networks. They allow to describe the dynamics of complex gene regulatory networks straightforwardly and efficiently. The attractors are essential in the analysis of the dynamics of a Boolean network. They explain that a particular cell can acquire specific phenotypes that may be transmitted over several generations. In this work, we consider a new representation of Boolean networks’ dynamics based on a new semantics used in Answer Set Programming (ASP). We use logic programs and ASP to express and deal with gene regulatory networks seen as Boolean networks, and develop a method to detect all the attractors of such networks. We first show how to represent and deal with general Boolean networks for the synchronous and asynchronous updates modes, where the computation of attractors requires a simulation of these networks’ dynamics. Then, we propose an approach for the particular case of circular networks where no simulation is needed. This last specific case plays an essential role in biological systems. We show several theoretical properties; in particular, simple attractors of the gene networks are represented by the stable models of the corresponding logic programs and cyclic attractors by its extra-stable models. These extra-stable models correspond to the extra-extensions of the new semantics that are not captured by the semantics of stable models. We then evaluate the proposed approach for general Boolean networks on real biological networks and the one dedicated to the case of circular networks on Boolean networks generated randomly. The obtained results for both approaches are encouraging.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.