{"title":"波在(1+1)维时空域中的传播和演化:一项综合研究","authors":"M. Khater","doi":"10.1142/s0217984923502354","DOIUrl":null,"url":null,"abstract":"In this investigation, we utilize two recent analytical schemes to unveil novel solitary wave solutions for the [Formula: see text]-dimensional Mikhailov–Novikov–Wang integrable equation. The said equation serves as a mathematical model that captures specific physical phenomena, albeit lacking a direct physical interpretation. Nevertheless, it finds relevance in various systems within the realm of nonlinear waves in physics. Through the application of the aforementioned analytical schemes, we derive fresh solutions and evaluate their accuracy by employing the variational iteration method. The congruence observed between the analytical and numerical solutions of the investigated model serves as validation for the constructed solutions. Furthermore, we delve into exploring the implications of obtaining precise and ground breaking solitary wave solutions on the practical applications associated with the studied model.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave propagation and evolution in a (1+1)-dimensional spatial-temporal domain: A comprehensive study\",\"authors\":\"M. Khater\",\"doi\":\"10.1142/s0217984923502354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this investigation, we utilize two recent analytical schemes to unveil novel solitary wave solutions for the [Formula: see text]-dimensional Mikhailov–Novikov–Wang integrable equation. The said equation serves as a mathematical model that captures specific physical phenomena, albeit lacking a direct physical interpretation. Nevertheless, it finds relevance in various systems within the realm of nonlinear waves in physics. Through the application of the aforementioned analytical schemes, we derive fresh solutions and evaluate their accuracy by employing the variational iteration method. The congruence observed between the analytical and numerical solutions of the investigated model serves as validation for the constructed solutions. Furthermore, we delve into exploring the implications of obtaining precise and ground breaking solitary wave solutions on the practical applications associated with the studied model.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984923502354\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984923502354","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Wave propagation and evolution in a (1+1)-dimensional spatial-temporal domain: A comprehensive study
In this investigation, we utilize two recent analytical schemes to unveil novel solitary wave solutions for the [Formula: see text]-dimensional Mikhailov–Novikov–Wang integrable equation. The said equation serves as a mathematical model that captures specific physical phenomena, albeit lacking a direct physical interpretation. Nevertheless, it finds relevance in various systems within the realm of nonlinear waves in physics. Through the application of the aforementioned analytical schemes, we derive fresh solutions and evaluate their accuracy by employing the variational iteration method. The congruence observed between the analytical and numerical solutions of the investigated model serves as validation for the constructed solutions. Furthermore, we delve into exploring the implications of obtaining precise and ground breaking solitary wave solutions on the practical applications associated with the studied model.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.