A. Noghrehabadi, Amin Samimi Behbahan, C. Wong, M. Behbahani-Nejad
{"title":"不同热通量下泡沫金属性能对PCM熔融性能影响的研究","authors":"A. Noghrehabadi, Amin Samimi Behbahan, C. Wong, M. Behbahani-Nejad","doi":"10.22059/JCAMECH.2019.273552.354","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to analyze the effects of structural and mechanical characteristics of metal foam on the melting behavior of phase change materials under the influence of different heat fluxes. To this aim, a two dimensional numerical model considering the non-equilibrium thermal factor, non-Darcy effect and local natural convection was used. The governing equations of PCM and metal foam are discretized using a finite volume method with a collocated grid arrangement. To simulate the melting of PCM, the enthalpy-porosity method is applied which computes the liquid fraction at each iteration, based on the enthalpy balance. The effect of metal foam characteristics (porosity, pores size and base material) and wall heat flux on the PCM melting time were investigated. The result showed that for both wall heat fluxes (4000 W m-2 and 8000 W m-2), foam structure and its mechanical properties have significant influence on the PCM melting time which these effects should be considered.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"52 1","pages":"320-331"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Investigation on the effect of metal foam properties on the PCM melting performance subjected to various heat fluxes\",\"authors\":\"A. Noghrehabadi, Amin Samimi Behbahan, C. Wong, M. Behbahani-Nejad\",\"doi\":\"10.22059/JCAMECH.2019.273552.354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to analyze the effects of structural and mechanical characteristics of metal foam on the melting behavior of phase change materials under the influence of different heat fluxes. To this aim, a two dimensional numerical model considering the non-equilibrium thermal factor, non-Darcy effect and local natural convection was used. The governing equations of PCM and metal foam are discretized using a finite volume method with a collocated grid arrangement. To simulate the melting of PCM, the enthalpy-porosity method is applied which computes the liquid fraction at each iteration, based on the enthalpy balance. The effect of metal foam characteristics (porosity, pores size and base material) and wall heat flux on the PCM melting time were investigated. The result showed that for both wall heat fluxes (4000 W m-2 and 8000 W m-2), foam structure and its mechanical properties have significant influence on the PCM melting time which these effects should be considered.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"52 1\",\"pages\":\"320-331\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCAMECH.2019.273552.354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCAMECH.2019.273552.354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
Investigation on the effect of metal foam properties on the PCM melting performance subjected to various heat fluxes
The purpose of this paper is to analyze the effects of structural and mechanical characteristics of metal foam on the melting behavior of phase change materials under the influence of different heat fluxes. To this aim, a two dimensional numerical model considering the non-equilibrium thermal factor, non-Darcy effect and local natural convection was used. The governing equations of PCM and metal foam are discretized using a finite volume method with a collocated grid arrangement. To simulate the melting of PCM, the enthalpy-porosity method is applied which computes the liquid fraction at each iteration, based on the enthalpy balance. The effect of metal foam characteristics (porosity, pores size and base material) and wall heat flux on the PCM melting time were investigated. The result showed that for both wall heat fluxes (4000 W m-2 and 8000 W m-2), foam structure and its mechanical properties have significant influence on the PCM melting time which these effects should be considered.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.