关于体外光学观察HeLa细胞和磷脂壳微泡的实验装置的简要说明

Q3 Medicine Physics in Medicine Pub Date : 2022-06-01 DOI:10.1016/j.phmed.2021.100043
Michiel Postema
{"title":"关于体外光学观察HeLa细胞和磷脂壳微泡的实验装置的简要说明","authors":"Michiel Postema","doi":"10.1016/j.phmed.2021.100043","DOIUrl":null,"url":null,"abstract":"<div><p>In a recent issue of Physics in Medicine, Akashi et al. demonstrated increased mortality of HeLa cells in combination with phospholipid-shelled microbubbles under high-amplitude sonication in an in-vitro experimental setup [1]. The authors attributed the increased mortality to cell damage caused by microbubble dynamics and mentioned the term sonoporation early in their paper. Their findings are a most valuable contribution with regards to ultrasonic imaging safety standards. However, the findings would be even more beneficial to the drug delivery community, provided they could be linked to previous outcomes on in-vitro experimental sonoporation. The purpose of this paper is to briefly underscore previous works with similar setups, highlighting the many agreements between early and recent work.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"13 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352451021000093/pdfft?md5=c52dbbffd544f11dc796a8c240881694&pid=1-s2.0-S2352451021000093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A brief note on experimental setups for in-vitro optical observations of HeLa cells and phospholipid-shelled microbubbles subjected to ultrasound\",\"authors\":\"Michiel Postema\",\"doi\":\"10.1016/j.phmed.2021.100043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a recent issue of Physics in Medicine, Akashi et al. demonstrated increased mortality of HeLa cells in combination with phospholipid-shelled microbubbles under high-amplitude sonication in an in-vitro experimental setup [1]. The authors attributed the increased mortality to cell damage caused by microbubble dynamics and mentioned the term sonoporation early in their paper. Their findings are a most valuable contribution with regards to ultrasonic imaging safety standards. However, the findings would be even more beneficial to the drug delivery community, provided they could be linked to previous outcomes on in-vitro experimental sonoporation. The purpose of this paper is to briefly underscore previous works with similar setups, highlighting the many agreements between early and recent work.</p></div>\",\"PeriodicalId\":37787,\"journal\":{\"name\":\"Physics in Medicine\",\"volume\":\"13 \",\"pages\":\"Article 100043\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352451021000093/pdfft?md5=c52dbbffd544f11dc796a8c240881694&pid=1-s2.0-S2352451021000093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352451021000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451021000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

在最近一期的《医学物理学》中,Akashi等人在体外实验装置中证明,在高振幅超声下,HeLa细胞与磷脂壳微泡结合会增加死亡率bbb。作者将死亡率的增加归因于微泡动力学引起的细胞损伤,并在论文的早期提到了sonoporization。他们的发现对超声成像的安全标准做出了最有价值的贡献。然而,如果这些发现能够与先前的体外超声实验结果联系起来,那么这些发现将对药物输送界更有益。本文的目的是简要地强调具有类似设置的先前工作,突出早期和最近工作之间的许多协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A brief note on experimental setups for in-vitro optical observations of HeLa cells and phospholipid-shelled microbubbles subjected to ultrasound

In a recent issue of Physics in Medicine, Akashi et al. demonstrated increased mortality of HeLa cells in combination with phospholipid-shelled microbubbles under high-amplitude sonication in an in-vitro experimental setup [1]. The authors attributed the increased mortality to cell damage caused by microbubble dynamics and mentioned the term sonoporation early in their paper. Their findings are a most valuable contribution with regards to ultrasonic imaging safety standards. However, the findings would be even more beneficial to the drug delivery community, provided they could be linked to previous outcomes on in-vitro experimental sonoporation. The purpose of this paper is to briefly underscore previous works with similar setups, highlighting the many agreements between early and recent work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in Medicine
Physics in Medicine Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
0.00%
发文量
9
审稿时长
12 weeks
期刊介绍: The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.
期刊最新文献
Simulation of the Positron Emission Mammography system based on the Monte Carlo method by considering the effects of Time Of Flight (TOF) and Depth Of Interaction (DOI) Shape-preserving average frequency response curves using rational polynomials: A case study on human stapes vibration measurements Nickel-based catalysts for non-enzymatic electrochemical sensing of glucose: A review Cost-effective, scalable and smartphone-controlled 3D-Printed syringe pump - From lab bench to point of care biosensing applications Rapid electrochemical detection of levodopa using polyaniline-modified screen-printed electrodes for the improved management of Parkinson's disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1