有理数算术的热切等式

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computational Logic Pub Date : 2023-01-17 DOI:10.1145/3580365
J. Bergstra, J. V. Tucker
{"title":"有理数算术的热切等式","authors":"J. Bergstra, J. V. Tucker","doi":"10.1145/3580365","DOIUrl":null,"url":null,"abstract":"Eager equality for algebraic expressions over partial algebras distinguishes or separates terms only if both have defined values and they are different. We consider arithmetical algebras with division as a partial operator, called meadows, and focus on algebras of rational numbers. To study eager equality, we use common meadows, which are totalisations of partial meadows by means of absorptive elements. An axiomatisation of common meadows is the basis of an axiomatisation of eager equality as a predicate on a common meadow. Applied to the rational numbers, we prove completeness and decidability of the equational theory of eager equality. To situate eager equality theoretically, we consider two other partial equalities of increasing strictness: Kleene equality, which is equivalent to the native equality of common meadows, and one we call cautious equality. Our methods of analysis for eager equality are quite general, and so we apply them to these two other partial equalities; and, in addition to common meadows, we use three other kinds of algebra designed to totalise division. In summary, we are able to compare 13 forms of equality for the partial meadow of rational numbers. We focus on the decidability of the equational theories of these equalities. We show that for the four total algebras, eager and cautious equality are decidable. We also show that for others the Diophantine Problem over the rationals is one-one computably reducible to their equational theories. The Diophantine Problem for rationals is a longstanding open problem. Thus, eager equality has substantially less complex semantics.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Eager Equality for Rational Number Arithmetic\",\"authors\":\"J. Bergstra, J. V. Tucker\",\"doi\":\"10.1145/3580365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eager equality for algebraic expressions over partial algebras distinguishes or separates terms only if both have defined values and they are different. We consider arithmetical algebras with division as a partial operator, called meadows, and focus on algebras of rational numbers. To study eager equality, we use common meadows, which are totalisations of partial meadows by means of absorptive elements. An axiomatisation of common meadows is the basis of an axiomatisation of eager equality as a predicate on a common meadow. Applied to the rational numbers, we prove completeness and decidability of the equational theory of eager equality. To situate eager equality theoretically, we consider two other partial equalities of increasing strictness: Kleene equality, which is equivalent to the native equality of common meadows, and one we call cautious equality. Our methods of analysis for eager equality are quite general, and so we apply them to these two other partial equalities; and, in addition to common meadows, we use three other kinds of algebra designed to totalise division. In summary, we are able to compare 13 forms of equality for the partial meadow of rational numbers. We focus on the decidability of the equational theories of these equalities. We show that for the four total algebras, eager and cautious equality are decidable. We also show that for others the Diophantine Problem over the rationals is one-one computably reducible to their equational theories. The Diophantine Problem for rationals is a longstanding open problem. Thus, eager equality has substantially less complex semantics.\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580365\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580365","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

只有当项和项都有定义的值并且它们不同时,偏代数上代数表达式的Eager等式才能区分或分离项。我们考虑将除法作为偏算子的算术代数,称为meadows,并关注有理数代数。为了研究迫切的平等,我们使用了普通草地,这是通过吸收元素对部分草地的总和。公共草地的公理化是作为公共草地上的谓词的渴望平等的公理化的基础。应用于有理数,我们证明了渴望平等的等式理论的完备性和可判定性。为了在理论上定位热切的平等,我们考虑了另外两个日益严格的部分平等:克莱恩平等,相当于普通草地的原生平等,以及一个我们称之为谨慎平等的平等。我们对迫切平等的分析方法是相当普遍的,因此我们将它们应用于这两个其他的偏平等;除了常见的meadows,我们还使用了另外三种代数来对除法求和。总之,我们能够比较有理数的部分草地的13种相等形式。我们关注这些等式理论的可判定性。我们证明了对于四个全代数,热切和谨慎的等式是可判定的。我们还证明了,对于其他人来说,有理数上的丢番图问题是一个可计算地简化为他们的等式理论的问题。理性的丢番图问题是一个长期存在的悬而未决的问题。因此,热切的平等具有实质上不那么复杂的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eager Equality for Rational Number Arithmetic
Eager equality for algebraic expressions over partial algebras distinguishes or separates terms only if both have defined values and they are different. We consider arithmetical algebras with division as a partial operator, called meadows, and focus on algebras of rational numbers. To study eager equality, we use common meadows, which are totalisations of partial meadows by means of absorptive elements. An axiomatisation of common meadows is the basis of an axiomatisation of eager equality as a predicate on a common meadow. Applied to the rational numbers, we prove completeness and decidability of the equational theory of eager equality. To situate eager equality theoretically, we consider two other partial equalities of increasing strictness: Kleene equality, which is equivalent to the native equality of common meadows, and one we call cautious equality. Our methods of analysis for eager equality are quite general, and so we apply them to these two other partial equalities; and, in addition to common meadows, we use three other kinds of algebra designed to totalise division. In summary, we are able to compare 13 forms of equality for the partial meadow of rational numbers. We focus on the decidability of the equational theories of these equalities. We show that for the four total algebras, eager and cautious equality are decidable. We also show that for others the Diophantine Problem over the rationals is one-one computably reducible to their equational theories. The Diophantine Problem for rationals is a longstanding open problem. Thus, eager equality has substantially less complex semantics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
期刊最新文献
Computationally Hard Problems for Logic Programs under Answer Set Semantics Fundamental Logic is Decidable SAT Modulo Symmetries for Graph Generation and Enumeration Strong Backdoors for Default Logic One or Nothing: Anti-unification over the Simply-Typed Lambda Calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1