{"title":"通过因果分析和对抗性审查了解教育技术中人口统计数据的效用和隐私性","authors":"Rakibul Hasan, Mario Fritz","doi":"10.2478/popets-2022-0044","DOIUrl":null,"url":null,"abstract":"Abstract Education technologies (EdTech) are becoming pervasive due to their cost-effectiveness, accessibility, and scalability. They also experienced accelerated market growth during the recent pandemic. EdTech collects massive amounts of students’ behavioral and (sensitive) demographic data, often justified by the potential to help students by personalizing education. Researchers voiced concerns regarding privacy and data abuses (e.g., targeted advertising) in the absence of clearly defined data collection and sharing policies. However, technical contributions to alleviating students’ privacy risks have been scarce. In this paper, we argue against collecting demographic data by showing that gender—a widely used demographic feature—does not causally affect students’ course performance: arguably the most popular target of predictive models. Then, we show that gender can be inferred from behavioral data; thus, simply leaving them out does not protect students’ privacy. Combining a feature selection mechanism with an adversarial censoring technique, we propose a novel approach to create a ‘private’ version of a dataset comprising of fewer features that predict the target without revealing the gender, and are interpretive. We conduct comprehensive experiments on a public dataset to demonstrate the robustness and generalizability of our mechanism.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"245 - 262"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Understanding Utility and Privacy of Demographic Data in Education Technology by Causal Analysis and Adversarial-Censoring\",\"authors\":\"Rakibul Hasan, Mario Fritz\",\"doi\":\"10.2478/popets-2022-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Education technologies (EdTech) are becoming pervasive due to their cost-effectiveness, accessibility, and scalability. They also experienced accelerated market growth during the recent pandemic. EdTech collects massive amounts of students’ behavioral and (sensitive) demographic data, often justified by the potential to help students by personalizing education. Researchers voiced concerns regarding privacy and data abuses (e.g., targeted advertising) in the absence of clearly defined data collection and sharing policies. However, technical contributions to alleviating students’ privacy risks have been scarce. In this paper, we argue against collecting demographic data by showing that gender—a widely used demographic feature—does not causally affect students’ course performance: arguably the most popular target of predictive models. Then, we show that gender can be inferred from behavioral data; thus, simply leaving them out does not protect students’ privacy. Combining a feature selection mechanism with an adversarial censoring technique, we propose a novel approach to create a ‘private’ version of a dataset comprising of fewer features that predict the target without revealing the gender, and are interpretive. We conduct comprehensive experiments on a public dataset to demonstrate the robustness and generalizability of our mechanism.\",\"PeriodicalId\":74556,\"journal\":{\"name\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"volume\":\"2022 1\",\"pages\":\"245 - 262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/popets-2022-0044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding Utility and Privacy of Demographic Data in Education Technology by Causal Analysis and Adversarial-Censoring
Abstract Education technologies (EdTech) are becoming pervasive due to their cost-effectiveness, accessibility, and scalability. They also experienced accelerated market growth during the recent pandemic. EdTech collects massive amounts of students’ behavioral and (sensitive) demographic data, often justified by the potential to help students by personalizing education. Researchers voiced concerns regarding privacy and data abuses (e.g., targeted advertising) in the absence of clearly defined data collection and sharing policies. However, technical contributions to alleviating students’ privacy risks have been scarce. In this paper, we argue against collecting demographic data by showing that gender—a widely used demographic feature—does not causally affect students’ course performance: arguably the most popular target of predictive models. Then, we show that gender can be inferred from behavioral data; thus, simply leaving them out does not protect students’ privacy. Combining a feature selection mechanism with an adversarial censoring technique, we propose a novel approach to create a ‘private’ version of a dataset comprising of fewer features that predict the target without revealing the gender, and are interpretive. We conduct comprehensive experiments on a public dataset to demonstrate the robustness and generalizability of our mechanism.