{"title":"探讨部分信息下联合分布近似的准确性","authors":"Luis V. Montiel, J. Bickel","doi":"10.1080/0013791X.2018.1512692","DOIUrl":null,"url":null,"abstract":"Abstract We test the accuracy of various methods for approximating underspecified joint probability distributions. In particular, we examine the maximum entropy and the analytic center approximations, and we introduce three methods for approximating a discrete joint probability distribution given partial probabilistic information. Our results suggest that recently proposed approximations and our new approximations more accurately represent the possible uncertainty models than do previous models such as maximum entropy.","PeriodicalId":49210,"journal":{"name":"Engineering Economist","volume":"64 1","pages":"323 - 345"},"PeriodicalIF":1.0000,"publicationDate":"2019-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0013791X.2018.1512692","citationCount":"2","resultStr":"{\"title\":\"Exploring the Accuracy of Joint-Distribution Approximations Given Partial Information\",\"authors\":\"Luis V. Montiel, J. Bickel\",\"doi\":\"10.1080/0013791X.2018.1512692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We test the accuracy of various methods for approximating underspecified joint probability distributions. In particular, we examine the maximum entropy and the analytic center approximations, and we introduce three methods for approximating a discrete joint probability distribution given partial probabilistic information. Our results suggest that recently proposed approximations and our new approximations more accurately represent the possible uncertainty models than do previous models such as maximum entropy.\",\"PeriodicalId\":49210,\"journal\":{\"name\":\"Engineering Economist\",\"volume\":\"64 1\",\"pages\":\"323 - 345\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0013791X.2018.1512692\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Economist\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0013791X.2018.1512692\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Economist","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0013791X.2018.1512692","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
Exploring the Accuracy of Joint-Distribution Approximations Given Partial Information
Abstract We test the accuracy of various methods for approximating underspecified joint probability distributions. In particular, we examine the maximum entropy and the analytic center approximations, and we introduce three methods for approximating a discrete joint probability distribution given partial probabilistic information. Our results suggest that recently proposed approximations and our new approximations more accurately represent the possible uncertainty models than do previous models such as maximum entropy.
Engineering EconomistENGINEERING, INDUSTRIAL-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
2.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍:
The Engineering Economist is a refereed journal published jointly by the Engineering Economy Division of the American Society of Engineering Education (ASEE) and the Institute of Industrial and Systems Engineers (IISE). The journal publishes articles, case studies, surveys, and book and software reviews that represent original research, current practice, and teaching involving problems of capital investment.
The journal seeks submissions in a number of areas, including, but not limited to: capital investment analysis, financial risk management, cost estimation and accounting, cost of capital, design economics, economic decision analysis, engineering economy education, research and development, and the analysis of public policy when it is relevant to the economic investment decisions made by engineers and technology managers.