{"title":"Ʌ-Hypernuclear作为双强子分子的态","authors":"A. Jahanshir","doi":"10.55981/aij.2023.1152","DOIUrl":null,"url":null,"abstract":"The study of exotic hypernuclei attracts a great deal of interest in nuclear physics. The reality of heavy hyperon hypernuclei is the subject of intense concern among theoreticians and experimenters in recent years. The core-hyperon model uses to explain abnormal nuclei spectra, recent observations of new exotic heavy hyperon hypernuclei cannot be explained or predicted by ordinary heavy core nuclei. These exotic hypernuclei states are a two-cluster bound states. We calculate the mass spectrum and constituent mass of particles in hypernuclei using the relativistic Schrödinger equation with molecular pseudoharmonic-type potential between particles inside the core and hyperon. Such calculations represent the interaction between the hyperon and the nuclei core. I review recent theoretical studies on the ground states and the excited states of hypernuclei bound states. Finally, we present explicit predictions of the exotic bound states based on the interactions obtained from quantum field theory and the projective unitary representation model. Studies have shown that by increasing the mass number of hyperon-core states, the value of the constituent mass and energy eigenvalue of Ʌ-hypernucleus increases. Also, by growing and increasing the proton number in the (Ʌ-N) states the value of the constituent mass of Ʌ-hyperon increases.","PeriodicalId":8647,"journal":{"name":"Atom Indonesia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ʌ-Hypernuclear States as Dihadronic Molecules\",\"authors\":\"A. Jahanshir\",\"doi\":\"10.55981/aij.2023.1152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of exotic hypernuclei attracts a great deal of interest in nuclear physics. The reality of heavy hyperon hypernuclei is the subject of intense concern among theoreticians and experimenters in recent years. The core-hyperon model uses to explain abnormal nuclei spectra, recent observations of new exotic heavy hyperon hypernuclei cannot be explained or predicted by ordinary heavy core nuclei. These exotic hypernuclei states are a two-cluster bound states. We calculate the mass spectrum and constituent mass of particles in hypernuclei using the relativistic Schrödinger equation with molecular pseudoharmonic-type potential between particles inside the core and hyperon. Such calculations represent the interaction between the hyperon and the nuclei core. I review recent theoretical studies on the ground states and the excited states of hypernuclei bound states. Finally, we present explicit predictions of the exotic bound states based on the interactions obtained from quantum field theory and the projective unitary representation model. Studies have shown that by increasing the mass number of hyperon-core states, the value of the constituent mass and energy eigenvalue of Ʌ-hypernucleus increases. Also, by growing and increasing the proton number in the (Ʌ-N) states the value of the constituent mass of Ʌ-hyperon increases.\",\"PeriodicalId\":8647,\"journal\":{\"name\":\"Atom Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atom Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55981/aij.2023.1152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atom Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55981/aij.2023.1152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The study of exotic hypernuclei attracts a great deal of interest in nuclear physics. The reality of heavy hyperon hypernuclei is the subject of intense concern among theoreticians and experimenters in recent years. The core-hyperon model uses to explain abnormal nuclei spectra, recent observations of new exotic heavy hyperon hypernuclei cannot be explained or predicted by ordinary heavy core nuclei. These exotic hypernuclei states are a two-cluster bound states. We calculate the mass spectrum and constituent mass of particles in hypernuclei using the relativistic Schrödinger equation with molecular pseudoharmonic-type potential between particles inside the core and hyperon. Such calculations represent the interaction between the hyperon and the nuclei core. I review recent theoretical studies on the ground states and the excited states of hypernuclei bound states. Finally, we present explicit predictions of the exotic bound states based on the interactions obtained from quantum field theory and the projective unitary representation model. Studies have shown that by increasing the mass number of hyperon-core states, the value of the constituent mass and energy eigenvalue of Ʌ-hypernucleus increases. Also, by growing and increasing the proton number in the (Ʌ-N) states the value of the constituent mass of Ʌ-hyperon increases.
期刊介绍:
The focus of Atom Indonesia is research and development in nuclear science and technology. The scope of this journal covers experimental and analytical research in nuclear science and technology. The topics include nuclear physics, reactor physics, radioactive waste, fuel element, radioisotopes, radiopharmacy, radiation, and neutron scattering, as well as their utilization in agriculture, industry, health, environment, energy, material science and technology, and related fields.