一种可伸缩的频域模型平均方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-08-23 DOI:10.1080/07350015.2022.2116442
Rong Zhu, Haiying Wang, Xinyu Zhang, Hua Liang
{"title":"一种可伸缩的频域模型平均方法","authors":"Rong Zhu, Haiying Wang, Xinyu Zhang, Hua Liang","doi":"10.1080/07350015.2022.2116442","DOIUrl":null,"url":null,"abstract":"Abstract Frequentist model averaging is an effective technique to handle model uncertainty. However, calculation of the weights for averaging is extremely difficult, if not impossible, even when the dimension of the predictor vector, p, is moderate, because we may have candidate models. The exponential size of the candidate model set makes it difficult to estimate all candidate models, and brings additional numeric errors when calculating the weights. This article proposes a scalable frequentist model averaging method, which is statistically and computationally efficient, to overcome this problem by transforming the original model using the singular value decomposition. The method enables us to find the optimal weights by considering at most p candidate models. We prove that the minimum loss of the scalable model averaging estimator is asymptotically equal to that of the traditional model averaging estimator. We apply the Mallows and Jackknife criteria to the scalable model averaging estimator and prove that they are asymptotically optimal estimators. We further extend the method to the high-dimensional case (i.e., ). Numerical studies illustrate the superiority of the proposed method in terms of both statistical efficiency and computational cost.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scalable Frequentist Model Averaging Method\",\"authors\":\"Rong Zhu, Haiying Wang, Xinyu Zhang, Hua Liang\",\"doi\":\"10.1080/07350015.2022.2116442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Frequentist model averaging is an effective technique to handle model uncertainty. However, calculation of the weights for averaging is extremely difficult, if not impossible, even when the dimension of the predictor vector, p, is moderate, because we may have candidate models. The exponential size of the candidate model set makes it difficult to estimate all candidate models, and brings additional numeric errors when calculating the weights. This article proposes a scalable frequentist model averaging method, which is statistically and computationally efficient, to overcome this problem by transforming the original model using the singular value decomposition. The method enables us to find the optimal weights by considering at most p candidate models. We prove that the minimum loss of the scalable model averaging estimator is asymptotically equal to that of the traditional model averaging estimator. We apply the Mallows and Jackknife criteria to the scalable model averaging estimator and prove that they are asymptotically optimal estimators. We further extend the method to the high-dimensional case (i.e., ). Numerical studies illustrate the superiority of the proposed method in terms of both statistical efficiency and computational cost.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2116442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2116442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要频域模型平均是处理模型不确定性的一种有效技术。然而,即使预测向量p的维度是中等的,计算用于平均的权重也是极其困难的,如果不是不可能的话,因为我们可能有候选模型。候选模型集的指数大小使得很难估计所有候选模型,并且在计算权重时会带来额外的数值误差。本文提出了一种可扩展的频繁度模型平均方法,该方法在统计和计算上都是有效的,通过使用奇异值分解对原始模型进行转换来克服这一问题。该方法使我们能够通过考虑最多p个候选模型来找到最优权重。我们证明了可伸缩模型平均估计器的最小损失渐近地等于传统模型平均估计量的最小损失。我们将Mallows和Jackknife准则应用于可伸缩模型平均估计量,并证明它们是渐近最优估计量。我们将该方法进一步扩展到高维情况(即)。数值研究表明,该方法在统计效率和计算成本方面都具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Scalable Frequentist Model Averaging Method
Abstract Frequentist model averaging is an effective technique to handle model uncertainty. However, calculation of the weights for averaging is extremely difficult, if not impossible, even when the dimension of the predictor vector, p, is moderate, because we may have candidate models. The exponential size of the candidate model set makes it difficult to estimate all candidate models, and brings additional numeric errors when calculating the weights. This article proposes a scalable frequentist model averaging method, which is statistically and computationally efficient, to overcome this problem by transforming the original model using the singular value decomposition. The method enables us to find the optimal weights by considering at most p candidate models. We prove that the minimum loss of the scalable model averaging estimator is asymptotically equal to that of the traditional model averaging estimator. We apply the Mallows and Jackknife criteria to the scalable model averaging estimator and prove that they are asymptotically optimal estimators. We further extend the method to the high-dimensional case (i.e., ). Numerical studies illustrate the superiority of the proposed method in terms of both statistical efficiency and computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1