铁基超导体中向列超导的研究进展

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Advances in Physics: X Pub Date : 2021-01-01 DOI:10.1080/23746149.2021.1878931
Jinghui Wang, Yueshen Wu, Xiang Zhou, Yifei Li, Bolun Teng, P. Dong, Jiadian He, Yiwen Zhang, Yifan Ding, Jun Li
{"title":"铁基超导体中向列超导的研究进展","authors":"Jinghui Wang, Yueshen Wu, Xiang Zhou, Yifei Li, Bolun Teng, P. Dong, Jiadian He, Yiwen Zhang, Yifan Ding, Jun Li","doi":"10.1080/23746149.2021.1878931","DOIUrl":null,"url":null,"abstract":"ABSTRACT Despite more than ten years of extensive research, the superconducting mechanism of iron-based superconductors (FeSCs) is still an open question. Generally, the high-temperature superconductivity is often observed with suppression of magnetic ordering, spin-density-wave, or even the structure transition by carrier doping. Furthermore, an electronic state ordering is also observed at temperatures close to or even above these transitions. Due to its proximity to the superconducting state and disappearance near the optimal superconductivity, it has been also suggested to interplay with superconductivity on a phenomenological level. Nevertheless, there is still no direct evidence to bridge the superconductivity to these transitions. Recently, another nematic order was observed in the superconducting state of heavily hole-doped compound AFe As (A = K, Rb, Cs), providing a possibility to explore the superconductivity gap symmetry nature. Here, by reviewing the recent experimental progresses on the nematic superconductivity in the FeSCs, we will introduce the progresses by various methods including the quasi-particle interference from scanning tunneling microscope, anisotropic gap magnitudes from angular resolved photoemission, the upper critical field and the superconducting transition temperatures from transport measurements. In addition, some recent reports and theoretical explanations for experimental results are followed. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23746149.2021.1878931","citationCount":"5","resultStr":"{\"title\":\"Progress of nematic superconductivity in iron-based superconductors\",\"authors\":\"Jinghui Wang, Yueshen Wu, Xiang Zhou, Yifei Li, Bolun Teng, P. Dong, Jiadian He, Yiwen Zhang, Yifan Ding, Jun Li\",\"doi\":\"10.1080/23746149.2021.1878931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Despite more than ten years of extensive research, the superconducting mechanism of iron-based superconductors (FeSCs) is still an open question. Generally, the high-temperature superconductivity is often observed with suppression of magnetic ordering, spin-density-wave, or even the structure transition by carrier doping. Furthermore, an electronic state ordering is also observed at temperatures close to or even above these transitions. Due to its proximity to the superconducting state and disappearance near the optimal superconductivity, it has been also suggested to interplay with superconductivity on a phenomenological level. Nevertheless, there is still no direct evidence to bridge the superconductivity to these transitions. Recently, another nematic order was observed in the superconducting state of heavily hole-doped compound AFe As (A = K, Rb, Cs), providing a possibility to explore the superconductivity gap symmetry nature. Here, by reviewing the recent experimental progresses on the nematic superconductivity in the FeSCs, we will introduce the progresses by various methods including the quasi-particle interference from scanning tunneling microscope, anisotropic gap magnitudes from angular resolved photoemission, the upper critical field and the superconducting transition temperatures from transport measurements. In addition, some recent reports and theoretical explanations for experimental results are followed. Graphical abstract\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23746149.2021.1878931\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2021.1878931\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2021.1878931","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

摘要尽管经过十多年的广泛研究,铁基超导体的超导机理仍然是一个悬而未决的问题。通常,通过载流子掺杂抑制磁有序、自旋密度波甚至结构转变,可以观察到高温超导性。此外,在接近或甚至高于这些转变的温度下也观察到电子状态有序。由于它接近超导状态,在最佳超导电性附近消失,也有人认为它在现象学水平上与超导电性相互作用。尽管如此,仍然没有直接的证据将超导性与这些转变联系起来。最近,在重空穴掺杂化合物AFe-As(A=K,Rb,Cs)的超导态中观察到了另一个向列有序,这为探索超导间隙对称性提供了可能性。在这里,通过回顾最近在FeSC向列超导性方面的实验进展,我们将介绍各种方法的进展,包括扫描隧道显微镜的准粒子干涉、角分辨光电发射的各向异性间隙大小、上临界场和输运测量的超导转变温度。此外,还介绍了最近的一些报道和对实验结果的理论解释。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress of nematic superconductivity in iron-based superconductors
ABSTRACT Despite more than ten years of extensive research, the superconducting mechanism of iron-based superconductors (FeSCs) is still an open question. Generally, the high-temperature superconductivity is often observed with suppression of magnetic ordering, spin-density-wave, or even the structure transition by carrier doping. Furthermore, an electronic state ordering is also observed at temperatures close to or even above these transitions. Due to its proximity to the superconducting state and disappearance near the optimal superconductivity, it has been also suggested to interplay with superconductivity on a phenomenological level. Nevertheless, there is still no direct evidence to bridge the superconductivity to these transitions. Recently, another nematic order was observed in the superconducting state of heavily hole-doped compound AFe As (A = K, Rb, Cs), providing a possibility to explore the superconductivity gap symmetry nature. Here, by reviewing the recent experimental progresses on the nematic superconductivity in the FeSCs, we will introduce the progresses by various methods including the quasi-particle interference from scanning tunneling microscope, anisotropic gap magnitudes from angular resolved photoemission, the upper critical field and the superconducting transition temperatures from transport measurements. In addition, some recent reports and theoretical explanations for experimental results are followed. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
期刊最新文献
The Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS) Probing excitons with time-resolved momentum microscopy Pore-scale viscous fingering as a mechanism for pattern formation – a historical overview, application, and the ways of controlling it Orbital angular momentum of Bloch electrons: equilibrium formulation, magneto-electric phenomena, and the orbital Hall effect Multiscale modelling of biopolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1