具有高频数据的资产组合的回撤风险度量

IF 0.8 Q4 BUSINESS, FINANCE Annals of Finance Pub Date : 2022-12-30 DOI:10.1007/s10436-022-00421-y
Giovanni Masala, Filippo Petroni
{"title":"具有高频数据的资产组合的回撤风险度量","authors":"Giovanni Masala,&nbsp;Filippo Petroni","doi":"10.1007/s10436-022-00421-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we analyze Drawdown-based risk measures for an equity portfolio with high-frequency data. The returns of individual stocks are modeled through multivariate weighted-indexed semi-Markov chains with a copula dependence structure. Through this recently published model, we show that the estimate of Drawdown-based risk measures is more faithful than that obtained with the application of classic econometric models.</p></div>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10436-022-00421-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Drawdown risk measures for asset portfolios with high frequency data\",\"authors\":\"Giovanni Masala,&nbsp;Filippo Petroni\",\"doi\":\"10.1007/s10436-022-00421-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we analyze Drawdown-based risk measures for an equity portfolio with high-frequency data. The returns of individual stocks are modeled through multivariate weighted-indexed semi-Markov chains with a copula dependence structure. Through this recently published model, we show that the estimate of Drawdown-based risk measures is more faithful than that obtained with the application of classic econometric models.</p></div>\",\"PeriodicalId\":45289,\"journal\":{\"name\":\"Annals of Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10436-022-00421-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10436-022-00421-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10436-022-00421-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们分析了具有高频数据的股票投资组合的基于提款的风险度量。通过具有copula依赖结构的多变量加权指数半马尔可夫链对个股的收益进行建模。通过这个最近发表的模型,我们表明,基于提款的风险度量的估计比应用经典计量经济学模型获得的估计更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drawdown risk measures for asset portfolios with high frequency data

In this paper, we analyze Drawdown-based risk measures for an equity portfolio with high-frequency data. The returns of individual stocks are modeled through multivariate weighted-indexed semi-Markov chains with a copula dependence structure. Through this recently published model, we show that the estimate of Drawdown-based risk measures is more faithful than that obtained with the application of classic econometric models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Finance
Annals of Finance BUSINESS, FINANCE-
CiteScore
2.00
自引率
10.00%
发文量
15
期刊介绍: Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance
期刊最新文献
Approximation and asymptotics in the superhedging problem for binary options Probability of no default for a microloan under uncertainty On the real rate of interest in a closed economy A Girsanov transformed Clark-Ocone-Haussmann type formula for \(L^1\)-pure jump additive processes and its application to portfolio optimization Option pricing in the Heston model with physics inspired neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1